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Abstract 

In this work a deterministic and stochastic model is developed and used to investigate the transmission 

dynamics of chicken pox. The models involve the Susceptible, Vaccinated, Exposed, Infectious and Recovered 

individuals. In the deterministic model the Disease free Equilibrium is computed and proved to be globally 

asymptotically stable when 𝑅0 < 1.The deterministic model is transformed into a stochastic model which was 

solved using the Euler Maruyama method. Numerical simulations of the stochastic Model show that as the 

vaccine rate wanes, the number of individuals susceptible to the chicken pox epidemic increases. 
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Introduction 

Before routine immunization was 

introduced the number of cases occurring each 

year was similar to the number of people born. 

But immunization has helped to reduce number 

of infections recorded. 

In 2015, chicken pox resulted in 6400 

deaths globally down from 8900 in 1990.Death 

occurs in about 1 per 60,000 cases. There is need 

therefore to develop appropriate mathematical 

model that can help to address the trend of the 

disease and suggest possible ways of combating 

the epidemic. 

The chicken pox vaccine is very safe and 

effective and generally has few side effects. Its 

side effects includes: mild reactions such as 

fever, redness or swelling at the injection site. 

Two doses of the vaccine are about 90% 

effective at preventing chicken pox. 

Individuals are encouraged to get 

vaccinated in order to protect yourself and others 

in the community who cannot get vaccinated 

such as those with weakened immune systems or 

pregnant women. People that have been 

vaccinated can still be infected with the disease 

but it is usually milder with fewer blisters, little 

or no fever. Chicken pox vaccine should be 

given to children, first dose at 12 months through 

15months old and second dose at 4 through 6 

years old. As in any viral infection, chicken pox-

infected patients should be encouraged to drink 

plenty of water, fruit juices, tea or lemonade. 

These will be used to replace fluids lost through 

sweat and heat during febrile episodes. Feed 

chicken pox patients with mashed vegetable, 

soup, pilaf, mashed meat, perris and food 

prepared using steam cooking. You may also 

give the patient yoghurt, bananas, apples and 

carrots lynx. Children with chicken pox need 

more rest to recover. Usually the child can safely 

return to school after 7-10 days after the fever 

and the rash have disappeared. However, a 

medical consultation may be necessary to 

diagnose the exact state of the episode. 

A lot of mathematical model have been 

developed to understand the dynamics of 

infectious diseases. London and Yorke (1973) 

stated that recurrent outbreaks of measles, 

chickenpox and mumps in cities were studied 

using a mathematical model of ordinary delay 

differential equations. They estimated the mean 

contact rate from the monthly reported cases 

over a 30- to 35-year period. The mean monthly 

contact rate for each disease was 1.7 to 2 times 

higher in the winter months than in the summer 

months. They showed that the seasonal variation 

was attributed primarily to the gathering of 

children in school. The two-year period of 

chicken pox outbreaks was the signature of an 

endemic infectious disease that would exhaust 

itself and become non-endemic if there were a 

minor increase in infectivity or a decrease in the 

length of the incubation period. Allen et. al., 

(1991) considered a discrete-time, age-

independent Susceptible-Infected-Recovered 

(SIR) type epidemic model of chicken pox. They 

verified three mathematically important 

properties for the model. Their solutions were 

non-negative, the population size was time-

invariant, and the epidemic concluded with all 

individuals either remaining susceptible or 

becoming immuned. Lloyd (2001) used 

mathematical model to study the epidemiology 

of childhood viral diseases, such as chicken pox. 

He described the period of infectiousness by an 

exponential distribution. He used Susceptible 

Infectious Recovered (SIR) model in his study. 

He observed that less dispersed distributions 

were seen to have two important epidemiological 

consequences. First, less stable behaviour was 

seen within the model: incidence patterns 

became more complex. Second, disease 

persistence was diminished: in models with a 

finite population, the minimum population size 

needed to allow disease persistence increased. 

The assumption made concerning the infectious 

period distribution was of a kind routinely made 

in the formulation of mathematical models in 

population biology. He detected that a major 

effect on the central issues of population 

persistence and dynamics were observed. The 

results of his study have broad implications for 

mathematical modelers of a wide range of 

biological systems. Grenfell (1992) examined 

the impact of seasonality and chaotic dynamics 

in simple models for the population dynamics of 

chicken pox on the probability of fade-out of 

infection. His results indicated a significant 

degree of fade-out of infection, which was not 

consistent with previously derived criteria for the 

persistence of chicken pox. A simple non-linear 

analysis of the simulated series was presented, 

and the epidemiological implications of those 

results were discussed. According to Zaman et. 
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al. (2007), almost all mathematical models of 

diseases start from the same basic premise. The 

population could be subdivided into a set of 

distinct classes dependent upon experience with 

respect to the relevant disease. They used 

Susceptible Infected Recovered (SIR). In their 

paper, they described an SIR epidemic model 

with three components; S, I and R. They 

described their study of stability analysis theory 

to find the equilibrium for the model. In order to 

achieve control of the disease, they considered a 

control program relative to the SIR model. A 

percentage of the susceptible population was 

vaccinated in that model. They showed that an 

optimal control exists for the control problem 

and they used Runge-Kutta fourth order 

procedure to describe the numerical simulations. 

Their results were consistent with a system that 

was driven by an oscillation in the transmission 

parameter(Duncan et. al., 1999).Infectious 

diseases provide a particularly clear illustration 

of the spatiotemporal underpinnings of 

consumer-resource dynamics. The paradigm was 

provided by extremely contagious, acute, 

immunizing childhood infections. Partially 

synchronized, unstable oscillations were 

punctuated by local extinctions. That, in turn, 

could result in spatial differentiation in the 

timing of epidemics and, depending on the 

nature of spatial contagion, might result in 

travelling waves. They used the basis of a 

gravity coupling model and a Time series 

Susceptible Infected- Recovered (TSIR) model 

for local dynamics. They proposed a meta-

population model for regional chicken pox 

dynamics. Their model could capture all the 

major spatiotemporal properties in pre-

vaccination epidemics of chicken pox in England 

and Wales (Yingcun et. al., 2004). Earn et al. 

(2000) showed that dramatic changes in patterns 

of epidemics had been observed throughout the 

twentieth century. They observed that for 

childhood infectious diseases such as chicken 

pox, the major transitions were between regular 

cycles and irregular, possibly chaotic epidemics 

and from regionally synchronized oscillations to 

complex, spatially incoherent epidemics. Lloyd 

(2000) illustrated how detailed dynamical 

properties of a model might depend in an 

important way on the assumptions made in the 

formulation of the model. According to his study 

most mathematical models used to understand 

the dynamical patterns seen in the incidence of 

childhood viral diseases, such as chicken poxs, 

employ a simple, but epidemiologically 

unrealistic, description of the infection and 

recovery process. The inclusion of more realistic 

descriptions of the recovery process was shown 

to cause a significant destabilization of the 

model. When there was seasonal variation in 

disease transmission that destabilization leads to 

the appearance of complex dynamical patterns 

with much lower levels of seasonality than 

previously predicted. Trottier and Philippe 

(2001) also presented a deterministic model as 

applied to the population dynamics of infectious 

diseases. They used SEIR deterministic model to 

provide useful insights into the mechanic of 

many common childhood diseases such as 

chicken pox. They showed that deterministic 

models exhibit damped oscillations, showed 

random variations and predicted the spread of 

infectious diseases. Tarwater and Martin (2001) 

evaluated the effect of population density on the 

epidemic outbreak of chicken pox. They used 

average-number contacts with susceptible 

individuals per infectious individual as a 

measure of population density, an analytical 

model for the distribution of the non-stationary 

stochastic process of susceptible contact was 

presented. They used a 5-dimensional lattice 

simulation model of disease spread to evaluate 

the effects of four different population densities. 

Analysis of the simulation results identified a 

decrease in a susceptible contact rate from four 

to three, resulted in a dramatic effect on the 

distribution of contacts over time, the magnitude 

of the outbreak, and, ultimately, the spread of the 

disease. Keeling and Grenfell (2002) revealed 

that the use of constant infectious and incubation 

periods, rather than the more convenient 

exponential forms, had been presented as a 

simple means of obtaining realistic persistence 

levels. They considered the persistence of 

chicken pox: reconciling theory, simulation and 

observation. They used a deterministic approach 

to parameterize a variety of models to fit the 

observed biennial attractor that determined the 

level of seasonality by the choice of model. 

Wallingaet al. (2005) estimated the chicken pox 

reproduction ratio for eight Western European 

vaccination programmes. 

Since many plausible age-structured 

transmission patterns results in a similar 
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description of the observations, it is not possible 

to estimate a unique value of the reproduction 

ratio. They developed a method to estimate 

bounds and confidence intervals for plausible 

values of the reproduction ratios. Trottier and 

Philippe (2006) presented univariate time series 

analysis of pertussis, mumps, measles and 

rubella based on Box-Jenkins or Auto-

Regressive Integrated Moving Average 

(ARIMA) modeling. The objective of their paper 

was to analyze the stochastic dynamics of 

childhood infectious disease using time series 

analysis. Their method, which enables the 

dependency structure embedded in time series 

data to be modelled, had potential research 

applications in studies of infectious disease 

dynamics.  

Siabouh and Adetunde (2013) developed 

a deterministic SEIR model for the study of 

chicken pox in cape Coast Metropolis, Ghana. 

Data from the Central Region Hospital, Cape 

Coast were used to analyze the rate of chicken 

pox infection in the metropolis. They observed 

that the population of infected individuals at the 

beginning rise sharply as the contact rate 

increases and then fall uniformly as time 

increases. Garnett et al (1992) were the first to 

explore the relationship between varicella and 

zoster using mathematical models; they tested 

the impact of vaccination on long term 

equilibrium incidence of the diseases. They 

ignored the short term medium. Poletti et al., 

(2013) developed a mathematical model on 

perspective of the impact of varicella 

immunization on herpes zoster .Their model was 

a multi country of VZV transfer and reactivation. 

They used the model to examine the impact of 

varicella vaccination on herpes zoster 

epidemiology in Italy, Finland and Uk. 

 

Model Formulation 

The Deterministic Model Formation. 

We formulate a model of chicken pox 

with vaccination. In this model all the newborns 

are assumed to be susceptible or vaccinated. The 

population is divided into five 

compartments 𝑆(𝑡), 𝑉(𝑡), 𝐸(𝑡), 𝐼(𝑡) and 𝑅(𝑡) 

known as Susceptible, Vaccinated, Exposed, 

Infectious and Recovered individuals where t 

represents time.The model for the dynamics of 

chicken pox is described by the following system 

of non –linear ordinary differential equation (The 

parameters are described in Table 1. 
𝑑𝑆

𝑑𝑡
= (1 − 𝜌)π + ηV − λS − μS  

𝑑𝑉

𝑑𝑡
= 𝜌𝜋 − 𝜆(1 − 𝜉)𝑉 − 𝜂𝑉 − 𝜇𝑉 

𝑑𝐸

𝑑𝑡
= 𝜆𝑆 + 𝜆(1 − 𝜉)𝑉 − (𝛼 + 𝜇)𝐸  (1) 

𝑑𝐼

𝑑𝑡
=  𝛼𝐸 − (𝜇 + 𝛿 + 𝜎)𝐼 

𝑑𝑅

𝑑𝑡
= 𝜎𝐼 − 𝜇𝑅 

 

 

Table 1: Model parameters and their description 

Parameters  Description  

𝜋 Recruitment rate 

𝜌 Fraction of vaccinated individuals  

𝛽 Contact rate  

𝛼 Rate of progression to an infectious stage 

𝜎 Recovery rate 

𝜇 Natural death rate 

𝛿 Disease induced death rate  

𝜂 Waning vaccine rate.  

 

   𝜇𝑆              𝜇𝐸  (𝜇 + 𝛿)𝐼                         𝜇𝑅 
 

 

 (1-𝜌)𝜋 𝜆𝑠                            𝛼𝐸 𝜎𝐼     

 

      

 𝜌𝜋 𝜂𝑉 𝜆(1 − 𝜉)𝑉 

 𝜇𝑉 

 

Figure 1: Flow diagram for the SVEIR Model 
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Assumptions of the SVEIR Model 

i.  susceptible individuals are equally likely 

to be infected by the infectious 

individuals in a case of contact including  

those who are vaccinated. 

ii.  Recovered individuals are permanently 

immune 

iii.  Some newborns are vaccinated at birth 

while some are not. 

iv.  Those in each class can die as a result of 

natural death. 

v.  vaccinated individuals get infected at a 

reduced rate ( 1 − 𝜉)𝜆, compared to the 

susceptible individuals where 𝜉 is the 

chicken pox vaccine efficacy.  

vi. there is a tendency that those in the 

infected class can die as a result of 

chicken pox.(ie chicken pox induced 

death can occur). 

 

Analysis of the Model 

In this chapter we analyze the chicken 

pox deterministic and stochastic models, we first 

prove that the set of solution is confined in a 

feasible region and then show that all the 

solutions are positive. We investigate the 

existence of the equilibrium point. Further we 

computed the basic reproduction number. We 

also proved global stability of the disease free 

equilibrium (DFE) using the lyapunov function. 

Finally we considered the numerical solution of 

the model using simulation. 

 

Basic Properties of the Deterministic Model 

Invariant Property 

Using the same procedure in Omame et. 

al.,(2018), the following result can be 

established: 

 

Theorem 1: The closed set 

𝐷 =  {(𝑆, 𝐸, 𝑉, 𝐼, 𝑅) ∈ 𝑅5+: 𝑆 + 𝐸 + 𝑉 + 𝐼 +

𝑅 ≥ 0} is positively invariant and attracting 

with respect to the model (1). 

 

Positivity of Solution. 

Theorem 2 (Lakshmikantham, 1989): The 

solutions of the chicken pox model with positive 

initial values in the feasible region 𝐷 remains 

positive at all time𝑡 > 0. 

Using the first modeling procedure 

developed by Allen et. al., (2008), we derive the 

stochastic model for the deterministic model (1) 

above 

 

The drift vector is defined as 

𝑓 = ∑ 𝑃𝑖 �⃗⃗⃗�𝑗
12
𝑗=1 ,          (2) 

Where
j

 and 𝑝𝑗are the random changes and the 

transition probabilities defined in the table 2. 

Table2: Table of Transition Probabilities 
Change Probability Event  

[1 0 0 0 0]T 𝑝1 =(1 − 𝜌)𝜋 Δ𝑡 Birth of an unvaccinated susceptible 

[0 1 0 0 0]T
 𝑝2 = (𝜌)𝜋 ∆𝑡 Vaccination of a susceptible individual 

[1-1 0 0 0]T P3=𝜂𝑉∆𝑡 Vaccinated susceptible loses immunity 

[0 -1 0 0 0]T 𝑝4 =𝜇𝑉 ∆𝑡 Vaccinated individual dies natural death 

[-1 0 0 0 0]T 𝑝5 =𝜇𝑆 Δ𝑡 Susceptible dies natural death  

[-1 0 1 0 0]T 𝑝6 = 𝜆𝑆 Δ𝑡 Susceptible becomes exposed 

[0 0 -1 0 0]T 𝑝7 = 𝜇𝐸 Δ𝑡 Exposed dies natural death 

[0 0 -1 1 0]T 𝑝8 = 𝛼𝐸 Δ𝑡 Exposed becomes infected. 

[0 0 0 -1 0]T 𝑝9 =(𝜇 +  𝛿)𝐼 Δ𝑡 Infected dies natural death due to the disease 

[0 0 0 -1 0]T 𝑝10 = 𝜎𝐼 Δ𝑡 Infected becomes recovered. 

[0 0 0 0 -1]T 𝑝11 =𝜇𝑅 Δ𝑡 Recovered dies natural death 

[0 -1 1 0 0]T 𝑝12 =𝜆(1 − 𝜉)𝑉 Δ𝑡 Vaccinated becomes exposed. 

Hence, the drift vector 𝑓  of order  5 ×  1 , is given by 

[
 
 
 
 
(1 − 𝜌)𝜋 + 𝜂𝑉 − 𝑆(𝜇 + 𝜆)

𝜌𝜋 − 𝑉(𝜂 + 𝜇) − 𝜆(1 − 𝜉)𝑉

𝜆𝑆 + 𝜆(1 − 𝜉)𝑉 − (𝛼 + 𝜇)𝐸

𝛼𝐸 − (𝜇 + 𝛿 + 𝜎)𝐼
𝜎𝐼 − 𝜇𝑅 ]

 
 
 
 

    (3) 

The covariance matrix is defined as V=∑ 𝑝𝑗
12
𝑗=1 𝜆𝑗(𝜆𝑗)

𝑇 

and is given by  



Nigerian Annals of Pure and Applied Science  Vol. 2, 2019  |189 

{
 
 

 
 

(1 − 𝜌)𝜋 + 𝜂𝑉 + 𝜇𝑆 + 𝜆𝑆 −𝜂𝑉 −𝜆𝑆 0 0

−𝜂𝑉 𝜌𝜋 + 𝜂𝑉 + 𝜇𝑉 + 𝜆(1 − 𝜉)𝑉 −𝜆(1 − 𝜉)𝑉 0 0

−𝜆𝑆 −𝜆(1 − 𝜉)𝑉 −𝜆𝑆 + 𝛼𝐸 + 𝜆(1 − 𝜉)𝑉 𝜇𝐸 + 𝛼𝐸 0

0 0 −𝛼𝐸 𝛼𝐸 + (𝜇 + 𝛿)𝐼 + 𝜎𝐼 −𝜎𝐼
0 0 0 −𝜎I 𝜎𝐼 − 𝜎𝐼}

 
 

 
 

        (4) 

 

The stochastic model is therefore given by  

{
𝑑�⃗�(𝑡) = 𝑓(𝑡, �⃗�(𝑡)𝑑𝑡 + 𝑉

1

2(𝑡, �⃗�(𝑡))𝑑�⃗⃗⃗⃗�(𝑡)

�⃗�(0) = [𝑋1(0, 𝑋2(0), 𝑋3(0), 𝑋4(0), 𝑋5(0)]
𝑇
}.                                                (5)                

 

Existence and Uniqueness of solution for SDEs 

The existence and uniqueness of 

solutions of SDEs is well established by Allen et 

al (1998). Hence we uphold that the Stochastic 

model has unique solution.  

 
 

Discussion of Results 

Numerical Simulations 

Many phenomena of interest in biology 

that can be modelled by the use of diffusion 

processes satisfying a nonlinear stochastic 

differential equation are not easy to solve 

analytically, it is advantageous to proceed via 

computer simulations. There will be time when 

the physical system is too complicated for 

analytical modelling; in such a case, simulation 

would be an appropriate tool (Feldan and 

Valdez-Flores, 2010). We therefore solve the 

model numerically using the MATLAB software 

(see appendix). We set year as a unit of time. 

The natural mortality or natural death rate 𝜇 is 

postulated to be equal to the inverse of the life 

expectancy at birth, which is about 54.5 years in 

Nigeria (UNAIDS-WHO, 2015); that is𝜇 =

1 54.5⁄ = 0.018𝑦𝑟−1. The recruitment rate 𝜋 

controls the total population size, because𝑁 =

𝜋 𝜇⁄ . We set𝜋 = 𝜇 × 300𝑦𝑟−1, following Song, 

et al (2002). 𝜂 is the vaccination rate and is taken 

to be 0.05 𝑦𝑟−1 (Moghadas et al(2003)). 𝛽 is the 

rate at which susceptibles children becomes 

exposed and is taken to be 0.00002 𝑦𝑟−1 

(Moghadas and Gumel, 2003). 𝛼 is the rate at 

which an exposed  individual becomes infectious 

per unit time and is taken to be 45.6 𝑦𝑟−1, the 

infectious period for Africa (Moghadas and 

Gumel, 2003). 𝜎 is the rate at which an 

infectious individual recovers per unit time and 

is taken to be 7.50 𝑦𝑟−1(Moghadas and Gumel, 

2003). 𝛿 is the differential mortality due to 

chicken pox and is taken to be 0.5 𝑦𝑟−1 

(Mohammed, et al (2010)). 𝑆(0)= 80, 𝑉(0) =

20, 𝐸(0)= 80, 𝐼(0)= 80, 𝑅(0)= 40. The initial 

populations were based on the real data  for the 

outbreak of chicken pox in okujagu-ama a rural 

community in Rivers state,Nigeria between 

september and october 2017.A total of three 

hundred households were studied in the house to 

house search for cases in okujagu-ama village.

 

 

Figure 4.1:  The stochastic plot of infectious   Figure 4.2: Deterministic plot of the infectious 

population over time when the treatment rate  population over time when the treatment rate 

𝜎 =  10.0.      𝜎= 10.0. 
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Figure 4.3: Stochastic plot of the infectious Figure 4.4: The deterministic plot of the  

population over time when the treatment is  infectious population over time when the 

rate is low 𝜎= 1.0. (low treatment rate).  treatment rate is low 𝜎= 1.0.(low treatment rate). 

 

 

 
 

Figure 4.5: The deterministic plot of the susceptible individuals over time at different  values of vaccine 

waning rates. 

 

Discussion of Results 

The simulations of the model (both 

deterministic and stochastic) using parameter 

values relevant to the outbreak of Chicken pox in 

Okujagu-Ama community in Okirika Local 

Government Area of Rivers State, Southern 

Nigeria is presented in the figures 1-5. 

From Figure 4.1, we observe that when 

the reproduction number is less than one, the 

disease dies out with time, as expected (based on 

the epidemiological interpretation of the 

reproduction number)., though there is a random 

fluctuation as it the infectious population 

decreases with time. 

In Figure 4.2, we observe that the 

infectious population, like in Figure 1, decreases 

over time since the treatment rate is very high. 

However, the random fluctuation is not observed 

in the deterministic plot. 

Figure 4.3 shows the stochastic profile of 

the infectious population over time when the 

treatment rate is very low. It is observed from 

this graph, that the infectious population 

increases with time and there is a random 

fluctuation along the path as time increases. That 

is to say, there are moments when the infectious 

individuals decrease and then increase again over 

the years. There are other environmental factors 

that might have cause this to occur, a 

phenomenon that is captured only in a stochastic 

model plot.   

The deterministic profile of the infectious 

population over time when the treatment rate is 

very low depicted in Figure 4.4, shows that the 

disease persists in the population over time. 

Finally, the deterministic plot of the 

susceptible population over time, varying the 

waning vaccine rates, depicted in Figure 4.5, 

shows that as the waning vaccine rate increases, 



Nigerian Annals of Pure and Applied Science  Vol. 2, 2019  |191 

the number of unvaccinated susceptible increases 

with time. This, if not checked leads to increase 

of the disease burden in the population. More 

people join the susceptible population since the 

susceptible individuals are more likely to be 

infected with the disease this will cause epidemic 

over time. Hence this model strongly 

recommends a vaccination for chicken pox 

which completely offers full protection against 

the disease in order to eliminate chicken pox 

from the population. 

The study clearly points to the 

importance of adequate and proper treatment as 

well as the use of a perfect vaccine as the major 

tools in the global fight against chicken pox 

disease. 

 

Conclusion 

In this work a deterministic and a 

stochastic differential equation models is 

developed and investigated for the transmission 

dynamics of chicken pox epidemic. The model, 

which is a multidimensional diffusion process, 

includes susceptible individuals, vaccinated 

individuals, latent (exposed), infected and 

recovered individual. A deterministic model was 

formed and the resulting model was transformed 

into a stochastic differential equation model by 

applying the procedure proposed by Allen et al 

(2008). As most nonlinear Stochastic 

Differential Equations (SDEs) are not easy to 

solve analytically, Euler Maruyama Method for 

SDEs is used to solve and analyze the model 

with the aid of MATLAB software (see 

appendix). The result shows that increased 

vaccination rate will lead to chicken pox disease 

reduction and possible extinction. The result has 

also shown that proper and supervised treatment 

of the infectious individuals can cause a major 

reduction in chicken pox disease transmission 

and possible extinction.  

Based on the result of our formulated 

model, the following steps should be taken into 

consideration to ensure eradication of measles in 

our country.  

1.   The National Health infectious diseases 

Control Programme should emphasize on 

the improvement in early detection of 

chicken pox cases so that the disease 

transmission can be minimized through 

treatment.  

2.  Not only should mass vaccination 

exercise be encouraged to cover the 

majority of the population whenever 

there is an outbreak of the disease but 

also, chicken pox prevention must be a 

public health priority. 
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