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In this paper, the bottom topography of a geophysical fluid flow is modelled in the presence of Coriolis force 
by the nonlinear shallow water equations. These equations, which are a system of three partial differential 
equations in two space dimensions, are solved using the perturbation method. The Effects of the Coriolis force 
and the bottom topography for particular initial flows on the velocity components and different kind of flow 
patterns possible in geophysical fluid flow have been studied and the results illustrated graphically.
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Introduction
Shallow water equations are a set of 

hyperbolic partial differential equations that 
describe the flow below the pressure surface in 
the fluid, sometimes, but not necessarily, a free 
surface. The equations are derived from the 
principle of conservation of mass and 
momentum in the case where the horizontal 
length scale is much greater than the vertical 
length scale. They can be used to model waves in 
the atmosphere, rivers, lakes and oceans in a 
large domain as well as gravity waves. The 
rotating shallow water equations including 
topographic effects are a leading order model to 
study coastal hydrodynamics on several scales 
including intermediate scale rotational waves 
and breaking waves on beaches. Also, they are 
used with Coriolis forces in atmospheric and 
large water bodies' model as simplification of 
the primitive equations of the flow.

Due to the nonlinearity of the model as 
well as the complexity of the geometries 
encountered in real-life applications such as 
tsunamis, dam break and flooding, much effort 
has been made in recent years to develop 
numerical methods to solve the equations 
approximately.

Bottom topography plays a major role in 
determining the flow field in the large water 
bodies like oceans, rivers, and so on. One of the 
most important applications of the shallow 
water waves is the tsunami waves usually 
generated by underwater earthquakes which 
cause an irregular topography of increasing or 
decreasing water depth. In particular, the main 
problem in solving the shallow water equations 
is the presence of the source terms modeling the 
bottom topography and the Coriolis forces 
included in the system, (Dritschel et al., 1999).

The geophysical fluid flow of shallow 
water are based on the assumption that
 where  and  are the characteristic values for  H L
the vertical and horizontal length scales of fluid 
respectively. These equations are a two-
dimensional hyperbolic system modeling the 
horizontal velocities for an incompressible fluid. 
Rotation is one of the most important factors that 
distinguishing geophysical fluid flow from 
classical fluid flow. If latitudinal varying 
Coriolis forces are includeding the shallow 
water equations, the resulting system can 
support gravity waves. The Coriolis force is 
proportional in magnitude to the flow speed and 
directed perpendicular to the direction of the 
flow. For a given horizontal motion, the 
strongest horizontal deflection is noted to be at 
the poles and there is no horizontal deflection at 

the equator and for vertical motion, the opposite 
is true. The magnitude of the Coriolis force 
proportionally depends upon the latitude and the 
wind speed. The direction of the Coriolis force 
always acts at right angles to the direction of 
motion, which is to the right in the Northern 
Hemisphere and to the left in the Southern 
Hemisphere (Pedlosky 1987).

A new well balance definite volume 
method within the framework of the finite 
volume evolution, Galerkin (FVEG) schemes 
for the shallow water equations with source 
terms modeling the Coriolis forces was 
presented (Lukácová-Medvid'ová et al., 
2007).Also studied in Gallouët et al. (2003) was 
the computation of the shallow water equations 
with topography by finite volume method, in a 
one-dimensional framework. Several single 
step methods have been derived from this 
formulation and numerical results were 
compared with the fractional steps method. 
Dellar and Salmon (2005) derived an extended  
set of shallow water equations that describes a 
thin inviscid fluid layer above fixed topography 
in a frame rotating about an arbitrary axis. 
Generalization of classical shallow water theory 
to the case of flows over an irregular bottom was 
shown by Karelsky et al. (2000). They showed 
that the simple self-similar solutions that are 
characteristic for the classical problem exist 
only if the underlying surface has a uniform 
slope. George (20008) also presented a class of  
augmented approximate Riemann solvers for 
the one-dimensional shallow water equations in 
the presence of an irregular bottom, neglecting 
the effect of Coriolis force. These methods 
belong to the class of finite volume Godunov 
type methods that use a set of propagation jump 
discontinuities, or waves, to approximate the 
true Riemann solution.

The fractional steps technique was 
applied for the numerical solution of the shallow 
water equations with flat bottom in the presence 
of the Coriolis force, (Shourci,2004) The .
method of fractional steps that he presented in 
his paper has the great advantage of solving the 
shallow water equations without the iterative 
steps involved in the multi-dimensional 
interpolation, and without the iteration 
associated with the intermediate step of solving 
the Helmholtz equation (Stainiforth and 
Temperton, 1986).

Rotating shallow water equations 
including topographic terms are numerically 
dealt with by the fractional steps method. In 
most real applications there is variable bottom 
topography that adds a source term to the 
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shallow water equations. There are several 
works, where both the Coriolis forces as well as 
the bottom topography are taken into account, 
(Talibi and Tber, 2004). 

In our work, we considered the shallow 
water equations with source terms the varied 
bottom topography and the Coriolis forces in 
two dimensions which makes it different from 
the existing works in the literature. Therefore a 
mathematical model of geophysical fluid flow 
over variable bottom topography was derived in 
the presence of Coriolis force. A system of three 
nonlinear partial differential equations was 
formulated in two-dimensions including the 
Coriolis force and bottom topography. We thus 
tried to determine the different kind of flow 
patterns possible with geophysical fluid flow 
characteristics, investigate the causes as well as 
factors leading to the flow pattern in this fluid 
flow. The solution to the modelled equations was 
by Perturbation method. We finally illustrated 
graphically our results which helped us in the 
interpretation of the modeled equations with the 
results.

Mathematical Formulation of the Problem
Assumptions of the Model

H e r e  w e  m a k e  t h e  f o l l o w i n g 
assumptions for the model:
1.  for this geophysical fluid flows; the 

horizontal length scale (L) is much 
larger than the vertical length scale (h). 
On a large scale this implies that the flow 
is predominantly horizontal and the 
vertical acceleration is small compared 

to the gravity acceleration.
2.  The Cartesian coordinates ,  and  will  x y z

be used, with  measured vertically  
upward.

3.  The velocity components in the 
directions of increasing x,  and z will be y
denoted by  and   u, v w

4.  We take the  horizontal plane as (y,x,)
being parallel to the surface of the still 
water, and the depth of the water at a 
given point as . h�=�(x;y;t)�>�0

5.  We denote velocity in the x-direction as 
u = u�(x; y;�t)�= and the velocity in the y-
direction as . While the plane  v = v�(x; y;t�)
(z = 0) can be chosen arbitrarily, it is 
usually positioned at mean water level.

6.  Measuring down from this plane, the 
bottom of the flow field is at depth�         
z�=�-�z�(x,�y). 

 The equation  is the equation z�=�-�z�(x,�y)
for the bottom surface, also known as the 
variable bottom topography, the depth of which 
is usually assumed to vary with  and . x y

The Model
 We hereby derive the momentum and 
Continuity equation for the two-dimensional 
shallow water flow model taking into account 
the effects of topography and the Earth's 
rotation. Consider a block of water of width  xd
and  in the  - and  - direction respectively yd x y

with the height  and the Fluid velocityh(x,y,t)  
u(x,y,t) v(x,y,t) and  in the x- and y- direction 
respectively as shown in Figure below,

Figure 4.2: A block of fluid showing the velocities and heights 
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By Newton's law of motion,  
maF = ,  

where F  is the sum of all forces, “ m ” is mass, and “ a ” is acceleration of the block of water. 
 

i) Change in momentum.  
 
 Momentum = q  = mass´velocity, so let mass of the control volume be; 

( ) ( )( ) ( ) ttyxhtyxvtyxu dr ,,,,,, + , 

and let velocity be ( )tyxu ,, ,then change in momentum, per unit of time td  is;  
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ii). Force due to the free surface of water is related to the potential energy of the wave which  
 is given as,  

( )xdrh += hxghmg  

where xhm dr=  is the mass, g  is force due to gravity, ( ) ( )( )tyxxhtyxhh ,,,,
2

1
d++=  is the 

average height and ( )xh += h  is the wave amplitude. No w the change in energy over the 

control volume is due to changes inh , in other words, it is 

yxtyxhyxxtyxxhxghPE ,,,,,, xdxddrd +-+++=  

( ) ( ) ( )( ) ( ) ( )( ){ }yxyxxtyxhtyxxhxghPE ,,,,,, xdxddrd -++-+=  
So the force due to the free surface of the water is change in energy per change in distance. 
Therefore;  
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iii). On the right hand side (RHS) of Newton’s equation, the mass of the volume of water is 

( )tyxxh ,,rd , and the acceleration is the derivative with respect to time of ( )tyxu ,, . The  

(RHS) expression is therefore  
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Combining the integrals 1 , 2   and 3  and taking the limit as 0®xd , dividing by r , we 

arrive at the equation;  
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The derivation for the y-component uses the same arguments, except that we now interchange 

x y u  y (�y, x )   with  and  with . Alternatively, rotate the  axis by    . Note that in performing this rotation of 
axes, the new  axis will be pointing in the opposite direction from the direction of the original  axis, 
but since  was measured as positive in the original  axis-direction, we change the sign of both  and  so v
the equation remains invariant.
 Making the same analysis as for the  direction equation, we find the second equation, as -x
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Let the force due to rotation in -x  and -y  be fhufhv,-  where f  is the force due to rotation 

(Coriolis force ) and is defined asb jsin2W=f  
Therefore the momentum equation for the two dimensional directions are 
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Continuity Equation 
Let us consider the fact that mass of fluid is conserved.  Let the volume domain  ( )tA  be a 

column of water perpendicular to the ( )yx,  plane, of height h  and small cross-sectional area 

tA¶  at time t, which evolves to ttA d+¶  at time tt d+ . The column of water is moving with 

the flow, so in this sense the derivation can be considered to be following a Lagrangian co -
ordinate system. We require that the water mass of the column is conserved, which is equivalent 
to saying that the rate at which the mass changes are zero:  

 

( )

( )80=òò dxdyh
Dt

D

tA

r

That is rate of change of mass in column that moves with the flow, and  is density of the substance. r
Using the transport theorem, which state that,
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Assuming continuity of the integrand, and that ()tA  is arbitrary, we can say that  
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 and as r  is constant with time and also constant in the -x and -y  coordinates, it can be 

eliminated to give
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The geophysical flows (shallow water) model over varied topography
 

is complete hence the 
model equations are as follows;
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3. Solution of the Problem  
We will consider the model equations  
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with initial condition and boundary conditions: 
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( ) ( ) 900sin, ££= xxyx bbax  

and the values of a and b  depends on the size of the hum
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Equation ( )c  in ( )10  can be written as; 
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This implies 
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Equation ( )a  in ( )10  can be written as;  
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Using ( )12 in( )13 , we obtain; 
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Similarly, equation ( )b  in ( )10  can be written as; 
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Using 12 in 15 , we obtain; 
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Now let afgf =<<< ,10 .  

We will solve this system by the perturbation method. To this end, suppose the solution (u, v, h) 
can be expressed in series form as:
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Substituting equation 17  in 12 , we have, 
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Substituting equation ( )17  in ( )14 , we have, 
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Comparing the coefficient of powers of f  we have; 
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Integrating  ( )21  with respect to t  we have; 

( ) tconsCtyxu tan,, 10 ==  

( ) 010 0,, uCyxu ==  



NAPAS Vol. 3  No 2,  June, 2020   |  193

27,, 00 utyxu =\  
Integrating  ( )22  with respect to t  we have; 
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Results and Discussion

 To be able to discuss the model 

equations and their solutions, we need a 

graphical sketch of what obtains with the type of 

the model and their solutions. Thus, using 

Maple software, we obtain the following 

results:

 In Figure 1,when  (that is the force 1.0=f

That is 

÷÷
ø

ö
çç
è

æ

¶

¶
+

¶

¶
-=

y

v

x

u
h

dt

dh 11
0

1  

This implies that, 

( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( )( )
( ) ( )( )

( ) (( ))
( ) ( )( )xme

xmsxev

xme

xmsxexa

xme

xa
xexamsamse

x

u

yxs

yxs

yxs

yxs

yxs

yxyxs

ç
ç
ç
ç
ç

è

æ

-

-

-

--
+

-
++-

=
¶

¶

+-

+-

+-

+-

+-

+-+-

2
0

2

2
2522

1

sin

cos2

sin

cos2cos

sin

sin
sin42

22

22

22

22

22

2222

ba

bab

ba

babbab

ba

bab
bab

t´

÷
÷
÷
÷
÷

ø

ö

 

( ) ( )
( )

( ) ( )( )2

0221

sin

2
22

22

22

2222

xme

yemsu
eyamsamse

y

v

yxs

yxs
yxsyxs

ba-
-=

¶

¶

+-

+-
+-+-  

( ) ( )( )

( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( )( )
( ) ( )( )

( ) ( )( )
( ) ( )( )

( ) ( )
( )

( ) ( )( ) ÷
÷
÷
÷
÷
÷
÷
÷
÷

ø

ö

ç
ç
ç
ç
ç
ç
ç

è

æ

÷
÷

ø

ö

ç
ç

è

æ

-
--

´

÷
÷
÷
÷
÷

ø

ö

ç
ç
ç
ç
ç

è

æ

-

--

-

--

+
-

++-

--=\

+-

+-
+-+-

+-

+-

+-

+-

+-

+-+-

+-

t
xse

yemsu
eyamsamse

t

xme

xmsxev

xme

xmsxexa

xme

xa
xexamsamse

xme
dt

dh

yxs

yxs
yxsyxs

yxs

yx

yxs

yxs

yxs

yxsyxs

yxs

2

022

2

5
0

2

2
222

1

sin

2
42

sin

cos

sin

cos2cos

sin

sin
sin22

sin

22

22

2222

22

22

22

22

22

2222

22

ba

ba

ba

ba

babbab

ba

bab
bab

ba

 

( ) ( ) ( )( )

( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( )( )
( ) ( )( )

( ) ( )( )
( ) ( )( )

( ) ( )
( )

( ) ( )( )
2

2
022

2

2

5
0

2

2
222

1

sin

2
42

sin

cos

sin

cos2cos

sin

sin
sin22

sin,,

22

22

2222

22

22

22

22

22

2222

22

t
xse

yemsu
eyamsamse

t

xme

xmsxev

xme

xmsxexa

xme

xa
xexamsamse

xmetyxh

yxs

yxs
yxsyxs

yxs

yx

yxs

yxs

yxs

yxsyxs

yxs

ç
ç
ç
ç
ç
ç
ç
ç
ç

è

æ

÷
÷

ø

ö

ç
ç

è

æ

-
--

´

÷
÷
÷
÷
÷

ø

ö

ç
ç
ç
ç
ç

è

æ

-

--
-

-

--

+
-

++-

´--=\

+-

+-
+-+-

+-

+-

+-

+-

+-

+-+-

+-

ba

ba

ba

ba

babbab

ba

bab
bab

ba

 

but ( ) 000,, 61 =Þ= Cyxh  

( ) ( )

( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( )( )
( ) ( )( )

( ) ( )( )
( ) ( )( )

( )
( )

( ) ( )( )

( )32
2

sin

2
4

sin

cos

sin

cos2cos

sin

sin
sin24

sin,,

2

2

022

2

5
0

2

2
222

1

22

22

22

22

22

22

22

22

2222

22

t

xme

yemsu
eyams

xme

xmsxev

xme

xmsxexa

xme

xa
xexamsamse

mextyxh

yxs

yxs
yxs

yxs

yx

yxs

yxs

yxs

yxsyxs

yxs

÷
÷
÷
÷
÷
÷
÷
÷
÷

ø

ö

ç
ç
ç
ç
ç
ç
ç
ç
ç

è

æ

-
-

-
-

--
-

-

--

+
-

++-

´+=\

+-

+-
+-

+-

+-

+-

+-

+-

+-+-

+-

ba

ba

ba

ba

babbab

ba

bab
bab

ba

 
Therefore;  
 

( ) ( ) ( ) ...,,,,,, 10 ++= tyxfutyxutyxu  

( )

( ) ( ) ( )
( ) ( )( )

( ) ( )

( )33

sin

sin

cos
cos2

,,

22

22

22

0

0 t

me

fv

me

xg
xggmsxe

utyxu

yxs

yxs

yxs

÷
÷
÷
÷
÷

ø

ö

ç
ç
ç
ç
ç

è

æ

-

+
-

-+

+=

+-

+-

+-

ba

ba

bab
bab

 



NAPAS Vol. 3  No 2,  June, 2020   |  195

due to rotation), the flow velocity is slowly 

varying with time.  At  the  flow velocity 5.0=f

increases rapidly as time increases and this is 

faster as compared to . Furthermore, at   the 1=f

flow velocity is high and increases with time at a 

greater rate than both  and .This shows 1.0=f 5.0=f

that if the force due to rotation is high, the rate of 

flow or flow velocity is also high with increasing  

time.

 Figure 2 is the graph of flow velocity 
v(x,y,t) -y in the horizontal direction with time t. 
This shows that the velocity is decreasing as 
time increases until it becomes zero. For   1.0=f
the variation of the flow velocity is slow as 
compared to  and . This indicates that 5.0=f 1=f

for increase in the values of the force due to 
rotation, the variation in flow velocity in the 
horizontal direction will decrease at a faster -y
rate and gradually turn to zero. 
 Figures 3 and 4 illustrates simple 
harmonic motion with different amplitudes. The 
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flow is also turbulent giving fluctuations in 
velocities. Velocities are varying in space due to 
turbulent fluctuations in the force and we can see 
the variation in the velocity fluctuations with 
different levels of turbulence. In figure 3, the 
effect of forces due to rotation on the velocity 
u(x,y,t) -x in the horizontal direction, that 
is ,  and  are the same giving  1.0=f 5.0=f 1=f

resulting  to the same fluctuations and 
turbulence.  Figure 4 shows the flow velocity 
v(x,y,t) -y in the horizontal  direction which 
shows that the level of turbulence is experienced 
more at   and . This means that when the force 
due to rotation is high there will be high and 
different levels of disorderliness which is the 
turbulent fluctuations.

Figures 5 and 6 shows that the flow velocity 

u(x,y,t) v(x,y,t)� y - and in the horizontal  

direction are constant. For  in figure 5, the 1.0=f
flow velocity  has a constant motion of less than 
10ms  5.0=f 1=f

-1 at each point, while  and  has 
60ms 120ms

-1 -1 
 and respectively. In the case of 

figure 6 the flow velocity  shows that v(x,y,t)

when the force due to rotation is small, the flow 
-1

velocity is high ( )  and so, at higher values, 9ms
say at and the flow becomes imaginary. This , 

indicates that irrespective of  and, the flow 
velocity does not change from point to point at 
any instant of time due to change in the force of 
rotation.
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Figures7 and 8 shows the view of the variation 

of  flow veloci ty  and  u(x ,y, t) v(x ,y, t)
respectively which gives the plane shape that 
describes the surface flow velocity in  direction x
with time t. The flow velocity is non-uniform at 

different times and space with the flow 
boundary freely deformable. At this point, 
overturning turbulence is generated resulting to 
mixing. Different colours indicate different 
forces due to rotation.         

Figure 7: Variation of velocity 
u(x,y,t)�with horizontal distance - x and time t for 
different values of f

Figure 8: Variation of velocity 
v(x,y,t)�with horizontal distance - x and time t for 
different values of f
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The Figures 9, 10, 11 and12 describe a 
flat surface flow of the water which can be 
extending infinitely in all directions. The peak 
will be decreasing and the distribution will be 
spreading wider at different times and space in 
two dimensions. The surface of the flow thus 
formed is called a free surface, because the flow 
boundary is freely deformable, in contrast to the 
solid boundaries. The boundary conditions at 
the free surface of an open flow are always that 

both the pressure and the shear stress are zero 
everywhere. Figures9 and 11 shows specifically  
the view of the variation of flow velocity  u(x,y,t)
and with the horizontal distance  and  v(x,y,t)� x  y
while Figures 10 and 12 shows the graph of the 
velocities and   with the horizontal distance  y
and time . Different planes in Figure 12 are  t
indicating different forces due to rotation (i.e f = 
0.1, f  = 0.5, f  = 1)

Figure 9: Variation of velocity 
u(x,y,t)�with horizontal distance - y and time t for 
different values of f

Figure 11: Variation of velocity 
u(x,y,t)�with horizontal distance - y and time t for 
different values of f

Figure 12: Variation of velocity 
v(x,y,t)�with horizontal distance - y and time t for 
different values of f

Figure 10: Variation of velocity 
u(x,y,t)�with horizontal distance - y and time t for 
different values of f

 These results showed the dimensional 
arguments that the flow velocity in the 
horizontal directions varies at different points in 
time. It is a non-linear wave and the flow 
exhibited non-linearity, resulting in non-linear 
waves travelling continuously through the 
domain with vertical advective mixing because 
of overturning. The flow predicts nonlinear 
internal waves with overturning from unstable 
conditions due to the force of rotation and 
bottom topography.

Conclusions
 I n  t h i s  work ,  we  ob ta ined  the 
mathematical model of geophysical fluid flow 
over variable bottom topography. We applied 
perturbation method to solve the system of the 
three partial differential equations in two-
dimensions with Coriolis force and bottom 
topography included. The presence of the 
Coriolis force in the shallow water equations 
causes the deflection of fluid parcels in the 
direction of wave motion and causes gravity 
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waves to disperse. As water depth decreases due 
to bottom topography, the wave amplitude 
increases, the wavelength and wave speed 
decreases resulting in overturning of the wave. 
The Coriolis force is responsible for the 
oscillatory motion in the direction of wave 
motion which causes gravity waves to disperse. 
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