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In this paper, a purely conformal mapping method for efficiently solving harmonic Dirichlet problems of 
electrostatic in domains free of charge and with charge whose boundaries have inconvenient geometries 
consisting of straight line segments is presented. The method which uses the inverse of an appropriately 
determined Schwarz-Christoffel transformation as the mapping function, was applied to harmonic Dirichlet 
problems in an infinite strip and infinite sector and the solution or electrostatic potential for the problem 
obtained for each case. Furthermore, the equipotential lines of the electric field were also obtained in order to 
show the features of the solution and the field analysed accordingly. The electric field intensity was also 
analysed to show its variation in the field. This method could therefore be a suitable alternative method for 
solving Laplace's equation in two dimensional electrostatic problems.

Key words and Phrases: Conformal Map, Schwarz-Christoffel Map, Analytic Function, Branch of a 
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Introduction 
Any distribution of charge be it 

continuous, discrete, or a combination thereof 
gives rise to an electric field. The electric field 
intensity ε at a point Q in such a field is by 
definition the vector representing the force 
exerted on a unit positive charge placed there. 
This force is derivable from a scalar potential 
function called the electrostatic potential and is 
expressed mathematically by Spiegel (1974) as  

     1

The problem of determining the 
electrostatic potential of an electric field in a 
domain D containing no charge requires solving 
a second order linear differential equation with 
constant coefficients 

     2

called Laplace's equation subject to some 
specified conditions on the boundary ∂D  of  D 
depending on the problem in question. When the 
values of f�are specified along the boundary of 
the domain the problem is called a Dirichlet 
problem and it is the concern of this paper. It is 
well known in the theory of analytic functions of 
a complex variables that if a function  f (z) = f�
(x,y)�+�iy�(�x, y)�is analytic in a domain D then its 
component functions f� (x, y) and y (x, y) are 
harmonic there. The solution to problem (2) 
using complex variable methods therefore 
requires finding the real and imaginary parts of a 
function which is analytic in D and such that 
these component functions satisfy the boundary 
conditions. It is also well known that if a 
function f� (x, y)� is harmonic throughout a 
domain D is harmonic throughout a domain y 
(x, y) conjugate to f�(x, y)�such that the function 
W�(z)��=��f�(x, y)�+�iy�(x, y)��is analytic throughout 
D. In electrostatics the function  W�is called the 
complex electrostatic potential and is related to 
the electric field intensity ε by the formula 

      3

given by Spiegel (1974). The complex variable 
method of conformal mapping is a useful 
intermediate step in the solution and analysis of 
two dimensional harmonic Dirichlet problems 
in electrostatics as well as other Dirichlet 
problems in ideal fluid flows, electromagnetism, 

and thermal physics as is evident in the works of 
Churchill and Brown (1984), Spiegel (1974), 
Tobin and Lloyd (2002),  Ganzolo et al. (2008), 
Tao et al. (2008), Anders (2008), Weiman et al. 
(2016), Yariv and Sherwood (2015), Andreas 
and Yorgos (2004), Xu et al. (2015), Wesley et 
al. (2008), Suman (2008) . The technique 
involves the transformation of the problem from 
a domain with an inconvenient geometry in one 
complex plane into a domain with a simpler 
geometry in another complex plane by means of 
an appropriate mapping function which 
preserves the magnitude of the angles between 
curves as well as their orientation. Amongst a 
variety of conformal transformations, the two 
most commonly used in the solution of 
electrostatic problems are the bilinear 
transformation and the Schwarz-Christoffel 
map. In this paper, we shall focus on the 
Schwarz -Chr i s t o f f e l  map  on ly.  Th i s 
transformation which is given by Churchill and 
Brown (1984) as

      4

or

      5

is one that conformally maps the upper half  Im 
z > 0 of the z plane and the entire x axis except 
for a finite number of points x , x , ..., x , ¥�in a 1 2 n-1

one-to-one correspondence onto the interior of a 
given simple closed polygon and its boundary, 
respectively, such that w  = f (x ) (j = 1,2, ..., n -1) j j

and  w  = f (¥) are the vertices of the polygon. n

The points z = x   (j = 1,2, ..., n - 1) are arranged j

such that the order relation  x  < x < ... < x1 2 n-1
is satisfied. The complex constants A and B in 
formula (4) determine the size, orientation and 

!
position of the polygon, the k s are real j

constants between - 1 and 1 determined from the 
relation - p�<�k p�<�p,�where �k p�(j = 1,2, ..., n -1)� j j 

are the exterior angles at the vertices w  (j = 1,2, j 

..., n - 1) of the polygon, while the limits of 
integration z and z are respectively fixed and 0 
variable points in the region Im z ≥ 0 of 
analyticity of the Schwarz-Christoffel function. 

! 
In order to make the function f (z)  in (5) 
analytic everywhere in the region Im z ≥ 0 
except at the n - 1 points z = x  (j = 1,2, ..., n - 1), j

we introduce branch lines or cuts extending 
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below those points and normal to the real axis 

and write 

where and 

1. It then follows that the function 

 7 

is analytic in the region Im z = 0 and that 

. Furthermore, the function 

is defined at the points 

1,2, … , n -1)  such that it continuous there 

(Churchill and Brown 1984) so that the 

Schwarz-Christoffel transformation (4) is 

continuous throughout the region Im z = 0 

and conformal there except for the points 

1,2, … , n - 1). 

In applications the domains usually 

|w|<

encountered are simply connected (Churchill 

and Brown, 1984) and for such domains the 

existence of conformal maps is guaranteed by 

the Riemann mapping theorem which asserts 

that there exists a unique one to one 

conformal map from any simply connected 

domain D  which is not the whole of the  z  

plane onto the unit disc |w|< 1 in the  w  

plane. It is also well known that if z  0 is any 

point in the upper half Im z > 0 , then the 

bilinear transformation  

 

where θ 0  is a constant, conformally maps the 

upper half of the z plane in a one -to- one 

manner onto the unit disc 1 and 

conversely. Thus the Riemann mapping 

theorem also asserts that there exists a unique 

one-to-one conformal map from the upper 

half Im z > 0 of the z  plane onto any simply 

connected domain which is not the whole of 

the z  plane. Although the Riemann mapping 

theorem demonstrates the existence of a 

mapping function, it does not produce it. 

However, for maps of the upper half  Im z >

0 of the z  plane onto the interior of a polygon 

the Schwarz -Christoffel formula provides 

explicit formulae that work. In this research 

paper, we shall apply the transformation in 

the solution of Dirichlet harmonic problems 

of electrostatics posed in domains consisting  

of straight line segments for the cases of an 

infinite strip and infinite sector of angle   

 Methodology 

Consider an electric field in a domain  D  of 

the  plane containing no charge and due to 

constant but different potentials on the parts  

of its boundary ¶D

¶D

 which consists of straight 

line segments. The problem of determining 

the electrostatic potential inside   D  requires 

solving the mathematical problem (2) subject 

to some conditions on the boundary for 

which f  takes prescribed values. In order to 

solve this problem the specific Schwarz -

Christoffel transformation that 

maps the upper half Im z > 0 of  the z  plane 

in a one-to one manner onto Ω which satisfies 

the boundary conditions 

where     

is first determined from the generalized form 

of the transformation (4) or (5). Solving for z

in terms of w , the inverse function 

which transforms the problem domain D  and 

hence the given electric field in the w  plane 

onto one in the upper half Im z > 0 of the  z 

plane is then obtained. If the inverse map 

6

turns out to be multiple valued, then it is 

made single valued and analytic everywhere 

in D  using the complex variable method of 

branch cuts  or lines. The various portions of 

the boundary ¶D  of  D with their respective 

potentials are also mapped by the inverse 

Schwarz-Christoffel transformation onto the 

appropriate portions of the  x axis,  
respectively. We note here that the 

transformation of a harmonic function via a 

conformal map remains harmonic (Spiegel, 
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1974). The inverse function thus simplifies 

the given harmonic Dirichlet problem to one 

in the upper half Im z > 0 of the z  plane and 

which satisfies the boundary conditions on 

the x  axis of the type shown in figure 1.

Figure 1: The Two Types of Boundary Conditions on the x axis

In the first diagram of figure 1, the 

function where A  and B  are 

real constants is harmonic in the upper half 

Im z > 0 of the z  plane since it is the 

imaginary part of the function 

Aln	z	+iB, where the branch of ln	z	is given as  

8 

The constants A and B   are then determined 

using the boundary conditions along the x

axis 

to obtain the solution or the electrostatic 

potential of the problem in the z  plane. The 

required solution in the  w  plane is then 

obtained using the inverse function 

by replacing  u and v for  x and y respectively     

in the expression for . In  the second

 case in which the boundary condition is 

given in the second diagram of Figure1, the 

harmonic function in the upper  of the  z

 plane is since it  is the

imaginary part of the function    

. Here too 

the real constants A,	B	and	C are determined 

using the boundary conditions and the 

solution�f  is determined as before. 

Alternatively, the transformed 

boundary value problem in the upper half 

Im z > 0 of the z  plane can be solved using

Poisson’s integral formula for that domain.  

If the problem domain  D  constains a 

charge q per unit length at z = z0 and the line 

charge - q-  per unit length at  z = z0 is given 

as 

The electrostatic potential due to the 

9

line charge q  per unit length at z =  z0 and the 

plat plate at zer o potential in the  z plane is 

therefore 

10 

Thus the required electrostatic 

potential at any point in the domain  D is  

found from the inverse function by replacing 

z  with  g  (w) in expression (10). The 

equipotential lines of the electric field are 

then generated by setting the electrostatic 

potential to a constant and then varying its 

values. 

 
Results 

In this section we present the solution 

of some harmonic Dirichlet problems in 

electrostatics posed in an i nfinite strip and 

infinite sector using the purely conformal 

based method outlined in the methodology.   

 

 

 

 

 

Problem 1: (Electrostatic Potential in an 

Infinite Strip of Width a) 

Problem 1(a) .We first consider the 

harmonic Dirichlet problem in equation (2) 

for the determination of the electrostatic 

potential  f�(u,	v) between two parallel 

conducting plates of infinite extent in which 
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line charge q  per unit length at z = z  0  and the 

boundaries are grounded, then, we use the 
the region between them is represented in two 

dimensions by the infinite strip in figure (2)gt

The part of the boundary of the strip 

corresponding to the line  v = 0  (that is, the 

 u axis of the w  plane) is kept at potential  f=

0 while the part corresponding to the line v =

 a is kept at potential f = 1. 

 

and described by the equation 

 

fact that the electrostatic potential due to a 

line charge q  per unit length at the point  z =

z  parallel to a flat plate at potential zero is 0

the same as replacing the plate with the line 

charge –q at  z = z0 (Spiegel, 1974). The 

complex electrostatic potential due to the line 

u

Figure 2: One-to-one mapping of the upper half Im z > 0 of the z  plane onto an infinite strip in 

the w plane.   

The Schwarz-Christoffel transformation 

that maps the half plane 

and the entire real axis except the origin in a 

one - to - one manner onto the strip and its 

boundary, respectively was found to be

 11
 

by considering the strip as a limiting form of 

a rhombus represented by the dashed line in 

figure 2 with vertices at 

respectively or using the 

table of transforms given by Spiegel (1974) 

and Churchill and Brown (1984). In this 

problem, the point is to be determined 

while the values 

a was found to be 

- 1. The inverse transformation is therefore 

  12 

and maps the strip in a one -to-one manner 

onto nonzero points in the upper half plane

re given. The value of 

 

Im z = 0. The part of the boundary of the 

strip corresponding to the line at zero 

potential is mapped by the transformation 

(12) onto the positive real axis at 

potential zero while the  part corresponding 

to the line at unit potential maps onto 

the negative real axis in the z  plane at 

potential unity. The given harmonic Dirichlst 

problem then simplifies to one in the upper 

half of the z  plane subject to the 

boundary conditions:

of the first type in figure 1(a). The function 

where 

and

are real 

 constants is harmonic in the upper half 

of the z  plane since it is the 

imaginary part of the analytic function 

. The values of the real constants  

were found to be 

respectively. Hence, the electrostatic 
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potential in the z  plane is 

and the required solution or electrostatic 

potential in the strip is therefore 

 (13)  

where 

from equation (12). On setting equation (13) 

equal to a constant , we obtain 

the equipotential lines 

(14) 

The electric field intensity at any point w  in 

the strip is

    (15) 

and has magnitude as 

    (16)  

Problem 1 (b). Now consider a 

situation in which the plates in problem 1(a) 

are both kept at zero potential and a parallel 

semi-infinite plate, placed midway between 

them, is kept at unit potential as shown in 

figure 3(a). We now determine the 

electrostatic potential in  the region between 

those plates. 

Figure 3(a): One-to-one mapping of the upper half Im z > 0 of the z  plane onto the Interior 

of an infinite strip With a Semi -Infinite Strip Placed at in the w  plane. 

Figure 3(b): Plots of Equipotential Lines Interior to an infinite strip of Width p  units With a 

Semi-Infinite Strip Placed at in the w  plane. 
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Proceeding from the conformal 

mapping aspect of the solution in part (a) of 

problem (1), the inverse of the Schwarz -

Christoffel transformation (12) is first 

applied to transform  the given problem to a 

corresponding simpler one in the upper half 

of the z  plane. The line charge q  at the point 

is mapped by the transformation (12) 

into a line charge q  at the point    

To find the electrostatic potential due to the 

line charge q per unit length at the point z0 =

parallel to the flat plate at zero potential, 

we simply replace the flat  plate with the line 

charge - q  per unit length at . The 

complex electrostatic potential due to the line 

charge q  per unit length at and the 

line charge - q  per unit length at 

is given as 

 (28) 

Hence, the electrostatic potential at any point 

in the upper half of the z plane

   (29) 

Thus the required potential at any point in the 

strip is  

 (30) 

on letting in equation (29). 

The next problem is motivated by the fact that 

the technique used is often employed to 

obtain closed form expressions for the 

characteristic independence and dielectric 

constant of different types of waveguides 

(Suman, 2008).  

 

 

 

Problem 2: (Electrostatic Potential in an 

infinite Sector of Angle a ) 

Problem 2(a). Now consider the 

harmonic Dirichlet  problem in equation (2) 

for the determination of the electrostatic 

potential in an angular sector bounded by two 

infinite plane conductors inclined at angle 

and charged to constant 

potentials , respectively as shown 

in Figure 4(a).

 

Figure 5: Infinite Sector of Angle Without Charge and With Charge at  z1. 
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The Schwarz-Christoffel 

transformation that maps the upper half 

of the  z  plane in a one -to one 

manner onto the infinite sector 

in the w  plane 

such that the point z = 1 is mapped into w =

1 is given by Churchill and Brown (1984) and 

Spiegel (1974) as

  (31) 

where the angular region is considered as the 

limiting form of a triangle as the angle t 

tends to zero.  We note here that the angle a

between the plates in the given problem is a 

particular case of the infinite sector with a

= pm�where . The inverse function 

is therefore  

 (32)

and maps the infinite sector in a one

manner onto the upper half Im z = 0 of the z  

plane. If 

then 

 

-to-one 

Figure 6: One-to-one mapping of the upper half Im z > 0 of the z plane onto an infinite Sector 

in the w  plane. 

Hence, the part of the boundary of the 

infinite sector corresponding to the positive 

real axis of the w  plane ( i.e, th e ray 

) at potential is mapped by 

the transformation (32) onto the positive real 

axis of the z plane (the ray 

0) at potential while the  part 

corresponding to the ray  

at potential maps onto the negative real 

axis  in the z  plane(i.e; the ray r >

) at potential . The point w = 0 

map into the point . The inverse 

transformation (32) therefore reduces the 

given Dirichlet problem to one in the upper 

half of the z  plane subject to the 

following boundary conditions: 

. The constants are 

determined using the boundary conditions to 

obtain their values as 

. Hence  

or

Further simplification yields

 
where 

and 

in the inverse function (32). Thus 

 (33)

since both vary from . On 

setting the electrostatic potential in eq uation 

(33) equal to a constant, then the equation of 

the equipotential lines for the electric field is 

obtained as  
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or 

34

35

35

The electric field intensity at any point in the 
field was found using the definition of the 
gradient of a scalar function in polar form 

and its expression is   

The magnitude of the electric field 

intensity  at any point in the electric field is 

therefore 

  37 

Problem 2(b). Suppose that in  

problem 2(a) the infinite plate conductors are 

now grounded and that a line charge q per  

unit length is located at point z  at equal 1

distances a from the boundaries as shown in 

the second diagram of Figure 5. The task 

once again is to find the electrostatic potential 

in the angular region containing this charge. 

Just like in the solution for part (a) of 

the problem, the inverse of the Schwarz-

Christoffel transformation (32) is first 

applied to transform the given problem to a 

corresponding simpler one in the upper half 

of the  z  plane. The line charge  q  per unit 

length at the point  is mapped 

by the transformation (32) into a line charge 

 q at the point  

where in the problem. We now 

apply the fact that electrostatic potential due 

to a line charge q  per unit length at the point 

parallel to a flat plate at potential zero 

is the same as replacing the plate with the line 

charge - q at . First, the complex 

electrostatic potential due to the line charge q 

per unit length at     and the 

line charge - q per unit length at 

is given  as 

The electrostatic potential at any point in the 

upper half of the z  plane is therefore 

  (38) or   

 (39) 

on multiplying and dividing equation (34) by 

-1 and then multiplying it by the imaginary 

number i . Thus the electrostatic potential at 

any point in the strip is 

(40) 

corresponding to 

in equation (14) the electrostatic potential 

, a constant. From equation (16), we

see that the magnitude of the  electric field 
intensity varies inversely with the plate width 
a. On the boundary of  the strip

 where , the magnitude of the 

electric field intensity tends to infinity, while 

on the boundary where    

Discussion 

Analysis of the Electric Field for the Various 

Cases of the Infinite Strip of Width ?? in 

Problem 1. 

In analysing the electric field for 

problem 1(a), we first note from equation (13) 

that the electrostatic potential is indeed its 

solution since it satisfies Laplace’s equation  

and the boundary conditions 

 equipotential  lines are straight lines which 

 are perpendicular to each other and the u axis. 
We observe too  that the boundary of the strip 
corresponding to the lines 

 

are also equipotential lines. The electrostatic 

potential is also constant along the 

equipotential lines. In particular, on the 

equipotential line 

 

. Clearly, the 
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In problem 1(b) the boundaries of the 

infinite strip in problem 1(a) were then 

grounded and a semi -infinite strip at potential 

was placed midway between the strip to 

obtain a new boundary value problem. Figure 

3(b) show the equipotential lines generated by 

setting the strip width . Here too the 

equipotential lines show paths in the electric 

field where the solution or electrostatic 

potential is constant. 

The domains of problems 1(a) and 1(b) 

had no charge and so in part (c)of the problem, 

we introduced line a charge as additional factor 

affecting electrostatic potential. Figure 4 show 

MATLAB plots of equipotential lines due to 

the line charge per unit length placed at the 

point in the strip of width . On 

these lines the electrostatic potential is constant 

meaning that no work is required in moving a 

charge along any of those lines. Work is 

however needed in moving a charge from one 

of the equipotential lines to another. 

 

Analysis of the Electric Field  for the Two 

Cases of the Infinite Sectors of Problem 2. 

Here too the electrostatic potential 

in equation (33) is the solution of 

problem 2(a) since it satisfies the polar form of 

Laplace’s equation 

where and the 

boundary conditions and 

. The equipotential lines are rays 

from the origin of the w  plane as is clearly 

evident from equations (34) or (35). Observe 

too that the boundaries of the infinite sector are 

also equipotential lines of the field. From 

equation (37), it is clear that the magnitude of 

the electric field intensity at any point in the 

electric field is inversely proportional to its 

distance from the origin of the w plane for each 
fixed angle a.  

In part (b) of the problem, we 
introduced line charges as additional factors 

affecting electrostatic potential and obtained 

the solution for this case too.

 

Conclusion
In this paper, a purely conformal 

mapping method for efficiently solving some 
harmonic Dirichlet problems of electrostatics in 
domains free of charge and then with charge is 
presented. Using this method the electrostatic 
potential of an electric field interior to and on the 
boundary of an infinite strip and infinite sector 
were determined and their equipotential lines 
analysed. We however note here that although 
this method gives exact analytical solutions and 
has interesting features, it is not without 
limitations. One such limitation of the method 
has to do with the evaluation of the integral 
invo lved  in  the  Schwarz -Chr i s to ffe l 
transformation and consequently recommend 
the use of numerical techniques in such 
situations (see paper by Thomas and Everett 
(2011). Secondly, because the method is purely 
conformal it is limited to two dimensional 
problems only and in particular to problems 
whose boundaries consist of straight line 
segments. We therefore suggest that further 
research in this field should focus on extending 
the work to include domains with other 
boundaries such as in cylinders.
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