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This study aims at modeling net radiation conditioned on wind speed in Port Harcourt using the stochastic 
(Markov chain model) approach. Thirty-four (34) years data (1977-2010) on daily maximum and minimum 
relative humidity, maximum and minimum air temperature, solar irradiance and wind speed were sourced 
from the International Institute of Tropical Agriculture (IITA) and used in the analysis. A two – state (surplus 
net radiation conditioned on high wind speed and surplus net radiation conditioned on low wind speed) 
Markov Chain model was developed and used in the course of this work. The result revealed that net radiation 
is surplus all through the year and monthly steady state probabilities (long run dependence) of surplus net 
radiation conditioned on low wind speed dominate all through the year. Further analysis with the model 
showed that surplus net radiation conditioned on low wind speed would occur for 2.44 days and surplus net 
radiation conditioned on high wind speed for 1.69 days on the average, resulting to a hot weather and climate.
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Introduction
 Meteorologists build models to study the 
weather and climate because they can't 
experiment with the weather and climate in the 
laboratory. The mathematical models (either 
analytical or numerical) can be divided into two 
categories, namely stochastic and deterministic 
models. These models can be used to describe 
physical reality A stochastic model predicts a . 
set of possible outcomes in terms of their 
l ike l ihoods  or  p robabi l i t i es ,  whi le  a 
deterministic model are usually expressed in 
terms of differential equations and predict a 
s i ng l e  ou t come  f rom a  g iven  s e t  o f 
circumstances.  The choice of using a 
deterministic or a stochastic model depends 
among other things on the nature of the process 
to be modeled. A process that is complex, 
involves many discrete events and has a strong 
element of random motion, a stochastic model is 
appealing for such processes (Dechsiri, 2005).
 It is difficult to model climatic variables 
determinist ically due to their  random 
(stochastic) behavior and multicollinearity 
(Nortazi, et al., 2013). Random variables cannot 
be predicted exactly; it depends on chance 
events of which probability values can be used 
to describe the likelihood that these random 
variables will occur. These random variables are 
either discrete (such as positive integers) or 
continuous (take on any values within a 
specified range of values). A discrete or 
continuous random variable whose value 
changes through time according to probabilistic 
laws is called a stochastic process. One general 
assumption of a stochastic process is that the 
process  is  s tat ionary ( the probabil i ty 
distribution of the process is not changing over 
time). Stochastic processes can be categorized 
into four groups, namely discrete state in 
discrete time, discrete state in continuous time, 
continuous state in discrete time and continuous 
state in continuous time model used in the 
development of a random system over the 
course of time (Dechsiri, 2005). The nature of 
the physical processes considered in this 
research, calls for a model with discrete state in 
discrete time stochastic process (Markov Chain 
model) in modeling net radiation conditioned on 
wind speed.
 The difference between the incoming 
solar (shortwave) radiation that reaches the 
earth's surface and the total terrestrial 

(longwave) radiation that is being emitted from 
the earth's surface is termed net radiation 
(Lincoln et al., 2015). This difference between 
the incoming solar radiation and the emitted 
terrestrial radiation creates an adiabatic heat 
sink (cool down) over the polar-regions and heat 
source (warm up) over the equatorial latitudes. 
Excess heat (surplus net radiation) from the 
equatorial region must be transferred by wind to 
the polar region (deficit net radiation), in order 
to balance the heat energy between the two 
regions. These factors control the nature of 
climate and lead to very distinctive climates in 
diverse regions of the world. So many authors 
have worked solely on either wind speed, the 
estimation of net radiation, wind speed and solar 
Irradiance combined using the deterministic 
approach. However, only few have applied the 
stochastic approach. Danilton et al. (2018) used 
two empirical methods (Gauss and Practical) in 
estimating reference surface net radiation from 
solar radiation. The result obtained revealed that 
both estimating methods showed satisfactory 
results, with relative mean absolute error values 
lower than 5.8%. Philip and Hazel (2015) 
worked on the climatological relationships 
between wind and solar energy supply in 
Britain. D'Amico et al. (2012) studied the First 
and second order semi-Markov chains for wind 
speed modeling. They noticed that the second 
order semi-Markov process is more suitable in 
state and duration and concluded that semi-
Markov models should be used when dealing 
with wind speed data. This work seeks to 
estimate net radiation using the Penman 
Monteith (FAO-56) model. Santiago et al. 
(2002) and Gavilán et al. (2007) recommended 
the use of Penman Monteith (FAO-56) model in 
computing net radiation (Rn), given that Von 
Randow and Alvalá (2006) and Galvão and 
Fisch (2000) encounter difficulties in 
computing net longwave (terrestrial) radiation 
using the FAO-24 equation. This study differs 
from previous works, as they rarely conditioned 
net radiation on wind speed in Port Harcourt 
using the Markov Chain modeling approach. 
According to Crommelin and Khouider (2015), 
climate predictions and weather forecasts 
should be expressed in terms of probabilities 
due to their random (stochastic) behavior. 
 Port Harcourt is in the south-south of 
Nigeria, and the capital of Rivers State. It lies 
within Longitude 7.0498° E and latitude 
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4.8156° N (Oyewole and Aro, 2018). The rainy 
season is from February to October and the air 
stream (South-west trade winds) blows over the 
area within these months to transport moisture 
along the coast line. The North-East trade winds 
is responsible for the dry conditions experienced 
from November to February (dry season), 
having passed over the hot dry Sahara desert to 
reach Port Harcourt from the North (Uko and 
Tamunobereton-Ari, 2013).

Theoretical Framework
Penman-Monteith (FAO-56) Model.
 Due  to  h igh  cos t  and  cons tan t 
maintenance of recording instruments such as 
n e t  r a d i o m e t e r s ,  n e t  r a d i a t i o n  ( R ) n

measurements are difficult to collect. The 
Penman-Monteith (FAO-56) step by step 
method was used to compute the daily net 
radiation. This includes:
 The inverse relative distance Earth-Sun 

(r¶ is given as (Spencer, 1971):  

      1

where j  is number of the day in the year between 
1 (1 January) and 365 or 366 (31 December).
 The solar declination (δ) can be found 
from the approximate equation of Cooper 
(1969),

      2   

The sun angle  is given by (John and ) (ws

William, 2013):

      3
where  is  the latitude of a particular location.j
The extraterrestrial radiation ,  for each day  (aR )

of the year can be estimated using; 

      4

2  
where  is solar constant =1367w/m (lgbal, Gsc

1983).
 The actual vapor pressure  can be (ea)

computed (Lincoln et al., 2015); 
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where )( minTe  and )( maxTe  are daily saturation 

vapour pressure at minimum and maximum 

temperature, and  maxRH , minRH are maximum 

and minimum relative humidity. 

The clear-sky radiation 
soR is given by (Lincoln 

et al., 2015): 

aso RZER )510275.0( -+=                              (6)
 

where Z is the elevation above sea level.  

The net terrestrial (long wave) radiation )( TR

is proportional to the absolute temperature of 

the surface rais ed to the fourth power. This 

relation is expressed quantitatively by the 

Stefan-Boltzmann law as given below: 
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where  is Stefan -Boltzmann constant 

[4.903x10-9MJ K-4 m-2day-1] and 
sR  is 

incoming solar radiation, MJm-2 day-1. 

Lastly, the net radiation (
nR )  which is the 

difference between the incoming net shortwave 

radiation (
nsR ) and the outgoing net terrestrial 

radiation (
TR )

 
is given by;  
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where  a  is albedo = 0.3 (John and Willam, 2013).

Markov Chain 

Markov chain is a stochastic process 

0,1,2, … … ? that takes on a finite or countable 

number of possible values and if then 

the process is said to be in state I at time n. 

Supposing that the process is in state i, there is 

fixed probability Pi j  that it will next be in 

state j. That is ; 

 

For all states and n  =  0.  

For a first-order Markov chain, the future state 

is independent of the previous states  

 but depends only on the 

present state (Ross, 2010).  
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another. This 

Transition Probability Matrix 

A Markov chain transition matrix is a square 

array describing the probabilities of the chain 

transiting from one state to 

transition probability Pi j is given as  (Balzter, 

11
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2000): 

 

÷
÷
÷
÷
÷

ø

ö

ç
ç
ç
ç
ç

è

æ

=

nnnn

n

n

ij

ppp

ppp

ppp

P

...

............

...

...

21

22221

11211

The elements are also called stationary     Pij
probabilities. They are defined by: 

 
ijnn piXjXP === - )/( 1

Considering the long period of the daily net 
radiation (34 years) used in this work, the 's  Pij
are assumed stationary.

N-Step Transition Probability Matrix   

For any value of n ( n = 2, 3 … ?, the n th power 

of the matrix P specify the probabilities that 

the chain will move from state x  to xi j is called 

the n-step probability matrix. This is based on 

the Chapman Kolmogorov equation, which 

states as follows;  

(13) 

where Pndenotes the matrix of n-step transition 

probability (Udom, 2010). 

 

Steady State Probabilities of a Markov 

Chain 

Consider a Markov chain with Z-states and the 

row vector 
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Where 
 

is called the steady state 
vector of the Markov Chain.  pcan be 

obtained by solving the relation; 

ijPpp =                        16

 

 

 where ijP are the stationary probabilities. 

 

For any 

four years (1977 -2010) and the monthly 

average was computed. 

 

Data transformations employed in the 
modeling process 

The daily wind speed data and the daily 

computed net radiation over the period (1977-

2010) was transformed into a sequence of 

binary events. For any thK  day, a random 

variable nkR  is defined to represent this event 

with the realization; 0 if the daily net radiation 

(Rn) is negative (deficit) and with realization 

‘1’ if the daily net radiation (Rn) is positive 

(surplus). We also define a random variable Wk  

for daily wind speed ( W) with realization; 0 if 

‘W’ is below monthly grand average ( ) and 

with realization ‘1’ if the daily wind speed (W) 

is above monthly grand average ( ). This is 

termed low and high wind speed respectively.  

Mathematically we have;  

Methodology 
Source of Data  

The daily maximum and minimum 

Relative-Humidity, maximum and minimum 

air temperature, solar radiation and wind speed 

data were obtained from the  International 

Institute of Tropical Agriculture (IITA) Ibadan, 

Nigeria for the period of thirty -four (34) years 

(1977-2010). The daily data w as used in 

computing the daily Actual vapor pressure ( ae

), and Terrestrial (long wave) radiation )( TR . 

The daily inverse relative distance Earth -Sun

)( r¶ , Solar declination (δ) , sun angle )( sw , 

extraterrestrial radiation )( aR ,Clear sky solar 

radiation ( soR ), and Net radiation ( nR ) were 

also computed using the step by step Penman -

Monteith model (equation 1 -9). Lastly, the 

daily net radiation and wind speed was 

arranged monthly over the period of th e thirty 
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Kth day, we capture a sequence of binary events 

using a random variable Xk with the realizations 

‘1’ if nkR  is 1(surplus) and is 1 (high) and 

‘2’ if nkR is 1 (surplus) and is 0 (low). 

Conditioning surplus net radiation on high and 

19

20

21and

low wind speed was done daily for each month. 

Mathematically, we have; 

where (days); W and are daily 

wind speed  and grand monthly average wind 

speed respectively.  

It is observed that net radiation is 

completely surplus all through the year in Port 

Harcourt, Nigeria  as presented in Figure 1 . 

Therefore, i n order to model the relationship 

between net radiation and wind speed, we 

define a new transformation as follows. For any 

 

where   S/H and S/L are Surplus net radiation 

conditioned on hi gh and low wind speed.  The 

Microsoft Excel Package (2007) was used to 

implement this transformation,  for accuracy 

and computational ease.  

In this study, the steady state 

probabilities for the first order Markov chain 

model were determined using the 

computational formula: 
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where   and are steady state probabilities 

of surplus net radiation conditioned on high 

wind speed and surplus net radiation 

conditioned on low wind speed respectively. 

The mean recurrence  time (in days) for each 

state is modeled as: 

1

1
p  and

2

1
p                22

Due to the huge amount of data involved in this 

work, a computer program was written in 

Pascal programming language version 1.5 for 

obtaining the transition counts, transition 

probabilities, N -step transition matrix and 

steady state probabilities. 

 

  

Results and Discussion
Monthly Net radiation and Wind speed
 Net radiation is surplus in Port Harcourt 
from January to December as presented in 
Figure 1. Surplus net radiation tends to increase 
the air temperature of a place, thus the excess 
surplus net radiation must be transferred by high 
wind speed to deficit net radiation region. Once 
people are exposed to severe heat, they undergo 
deadly illnesses, such as heat stroke and heat 
exhaustion. Therefore, the transfer of heat 
continues until both the warmer and cooler 
bodies attain the same temperature. Average 
monthly wind speed in Port Harcourt increases 
and decreases from January to December as 
shown in Figure 1 having it highest and lowest 
values in the months of April and December 
respectively.

Figure 1:  Average monthly net radiation and wind speed.
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 Surplus net radiation is maximum in the 
month of September and minimum in April. 
This implies that the month of April would be 
relatively cooler compared to other months 
because the surplus net radiation is transferred 
by excess high wind speed to deficit net 
radiation regions. This result agrees with the 
work of Uko and Tamunobereton-Ari (2013). 
They correlated the monthly variation of 
weather conditions of rainfall, humidity, 
temperature, solar radiation, and evaporation 
with each other in order to deduce climatic 

changes over the ten year period. They observed 
that the rainy season is from February to 
October and the air stream (South-west trade 
winds) blows over the area within these months 
to transport moisture along the coast line. 

First order transition probability matrix
 The first order transition probability 
matrix is obtained by dividing each transition 
counts as presented in Table 1 by the total 
transition row wise in a matrix form.

Table 1: Transition Counts of surplus net radiation conditioned on high or low wind speed.

SEQ.  JAN.  FEB.  MAR.  APR.  MAY  JUNE JULY AUG. SEPT. OCT. NOV. DEC. 
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S/H is surplus net radiation conditioned on High wind speed;  S/L is surplus net radiation conditioned on 

low wind speed; - is transition

 The transition probabilities of surplus 
net radiation conditioned on low wind speed 
transiting into the same state dominates all 
through the year, having its highest and lowest 

peck in the months of 
 September (0.78 or 78%) and December 
(0.66 or 66%) as presented in Figure 2. 

Figure 2: Transitions probabilities of a particular state transiting into another state.

 Equal transiting probabilities of surplus 
net radiation conditioned on low wind speed 
transiting into the same state is observed in the 
months of March, August, September and 
November (0.75 or 75%); also in the months of 
February and June (0.73 or 73%); lastly, the 
months of July and October (0.72 or 72%) as 

shown in Figure 2. This implies that there is a 
75% chance of surplus net radiation conditioned 
on low wind speed transiting into the same state 
in the months of March, August, September and 
N o v e m b e r.  S i m i l a r l y,  t h e  t r a n s i t i o n 
probabil i t ies  of  surplus net  radiat ion 
conditioned on high wind speed transiting into 
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the same state are the same in the months of 
April, July and September (0.66 or 66%); also 
November and December (0.56 or 56%); lastly, 
May and October (0.57 or 57%) as shown in 
Figure 3. This implies that there is a 57% chance 
of surplus net radiation condition on high wind 
speed transiting into the same state in the months 
of May and October.
 The transition probabilities of surplus 
net radiation conditioned on high wind speed 
transiting into a surplus net radiation 
conditioned on low wind speed and surplus net 
radiation conditioned on low wind speed 
transiting into a surplus net radiation 
conditioned on high wind speed is below 0.45. 
This means that, the chance of this transitions 

occurring is less than 45% as presented in 
Figure 2. Surplus net radiation conditioned on 
low wind speed transiting into the same state has 
the highest chance of occurring from January to 
December, resulting to an increase in air 
temperature in Port Harcourt month in month 
out.

Steady state probabilities.
 Surplus net radiation conditioned on low 
wind speed has the highest monthly steady state 
probabilities (long run dependence) from 
January to December as shown in Figure 3, 
having its highest and lowest probabilities in the 
months of November and April respectively. 

Figure 3: Monthly steady state probabilities of surplus net radiation conditioned on High and Low 
wind speed (S/H and S/L)

 The month of November would be 
warmer compare to the month of April, because 
more heat is being retained in the month of 
November. The month of April experiences the 
highest amount of wind speed as shown in 
Figure 1. This explains why April has the lowest 
steady probability when net radiation was 
conditioned on wind speed. Hence, more of the 
surplus net radiation will be transferred by this 
high wind speed in the month of April to deficit 
net radiation region, thereby decreasing the air 
temperature. 
 The steady states probabilities of surplus 
net radiation conditioned on low wind speed are 
the same in the months of May and August (0.60 
or 60%). Similarly, it is also observed that equal 
steady state probabilities of surplus net radiation 
conditioned on high wind speed occurs in the 
months of May and August (0.40 or 40%) as 
presented in Figure 3. This signifies that at the 
long run, there is a chance of 60% surplus net 
radiation conditioned on low wind speed and 

40% surplus net radiation conditioned on high 
wind speed occurring in the months of May and 
August. It is also observed that in Figure 1, 
surplus net radiation occurs all through the year. 
Thus, Figure 3 reveals that 47% and 36% of 
surplus net radiation are transferred by high 
wind speed and retaining 53% and 64% surplus 
net radiation in the months of April and 
November respectively. Hence, this would 
result to an increase in air temperature at Port 
Harcourt. On the average, 42% of the surplus net 
radiation is transferred, in order to maintain 
thermal equilibrium, while 58% of the surplus 
net radiation is retained in Port Harcourt as 
presented in Figure 3.

Mean Reoccurrence Time (days).
 The mean reoccurrence times (in days) 
are the number of days it takes for a given state 
to reoccur. It takes 2.48 and 1.68 days for 
surplus net radiation conditioned on high and 
low wind speed respectively, to reoccur in the 
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months of May and August.  Also it takes 2.54 
and 1.65 days for surplus net radiation 
conditioned on high and low wind speed, to 
reoccur in the months of September and 
October. Lastly, it takes 2.13 and 1.88 days for 
surplus net radiation conditioned on high and 
low wind speed, to reoccur in the month of April 
as presented in Figure 4. This means that, the 
month of April will be hot for 2.13 days and cool 

for 1.88 days, while the month of August is hot 
for 1.68 days and cools for 2.48 days. This could 
possibly explain why the month of April is hot 
compared to the month of August. On the 
average, the mean reoccurrence times (days) for 
surplus net radiation conditioned on high and 
low wind speed to reoccur is 2.40 and 1.72 days 
respectively.

Figure 4: Monthly mean reoccurrence times (days) of Surplus net radiation conditioned on High
or Low wind speed (S/H and S/L).

 This indicates that, Port Harcourt would 
be hot for 2.40 days and cool for 1.72 days on the 
average all through the year, resulting to a hot 
weather. This could perhaps explain why Akpan 
and Ebito (2014) stated that the dry season 
(November to April) is characterized by higher 
solar radiation and temperature, which agrees 
with our result. A limitation of their work lies on 
the inability of the authors to quantify the 
proportion of net radiation and the mean 
r e c u r r e n c e  t i m e  r e s p o n s i b l e  f o r  t h e 
aforementioned hotness. They used the 
Shuttleworth equation to estimate the rate of 
evaporation in Port Harcourt, Nigeria using ten 
years (2001 -2010) data on evaporation, 
temperature, relative humidity, wind speed and 

solar radiation. 

Study Implication
 The amount of incoming solar radiation 
absorbed by the earth's surface is far greater than 
the amount of terrestrial radiation emitted in 
Port Harcourt as shown in Figure 1. Surplus net 
radiation tends to increase the air temperature at 
Port Harcourt, thereby increasing the rate of 
evaporat ion of  energy,  water  vapour, 
evapotranspiration and affecting every aspect of 
life (human, plants and animals). Figure 3 
reveals that 46%, 40%, 41%, 47%, 40%, 44%, 
45%, 40%, 39%, 39%, 36% and 44% of the 
surplus net radiation are transferred by high 
wind speed from Port Harcourt to deficit regions 
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in the months of January, February, March, 
April, May, June, July, August, September, 
October, November and December respectively. 
This maintains the air temperature in Port 
Harcourt. The surplus net radiation that is 
retained in Port Harcourt is more compared to 
the surplus net radiation transferred to deficit net 
radiation regions. This result agrees with the 
work of Uko and Tamunobereton-Ari (2013). 
They observed that the dry season months 
(November to February) is shorter and hotter as 
the year progresses. 
 Generally, increase in air temperature is 
likely to have negative effects on yields of crops 
in some region, but crops in other regions may 
benefit. The duration of the growing season of 
any crop in any given location refers to the 
number of days (mean reoccurrence time) when 
crop growth takes place. The growing season 
determines which crops can be grown in a 
region, as some crops need lengthy growing 
seasons,  while others mature quickly. 
Depending on the area and the climate, the 
growing season of any crop is influenced by 
rainfall, frost days, air temperatures and 
sunshine hours. The changes in the duration of 
the growing season of plant can have both 
negative and positive effects on the yield and 
prices of particular crops in any region. 
According to Agada et al. (2016), 40% of the 
rural inhabitants are committed to agricultural 
activities in River state. A variety of short season 
crops including cocoyam, water yam, sweet-
potato, groundnut, maize, sugar-cane and 
assorted vegetables are grown in Port Harcourt. 
A continuous increase in air temperature in Port 
Harcourt can affect all these crops negatively 
(Amanchukwu, 2015). 
 Many studies have identified the Niger 
Delta region as highly vulnerable to impacts of 
climate change, such as, increased sea level, 
increased precipitation, coastal erosion, 
flooding and intensive industrial activities from 
oil exploration (increased greenhouse gases) 
(Matemilola, 2019). Greenhouse gases entrap 
heat in the lower atmosphere and cause positive 
radiative forcing. In response to increase in 
concentrations of heat-trapping greenhouse 
gases, the average air temperatures in Port 
Harcourt is increasing and its likely to continue 
rising. Riziki (2010) observed that people living 
in flood-prone regions are exposed to flood-
related health hazards such as dysentery and 

cholera. Since climate change can shift the 
ocean currents and wind patterns that drive the 
world's climate system, some areas would 
become warmer or cooler than other. A warmer 
temperature is one of the main direct signs that 
the climate is changing (U.S.E.P.A., 2016). This 
work reveals that Port Harcourt air temperature 
is becoming warmer as a result of surplus net 
radiation.

Conclusion
 Net radiation is surplus from January to 
December in Port Harcourt. The transition 
probabilities of surplus net radiation condition 
on low wind speed transiting into the same state 
dominates from January to December. Also, the 
monthly steady state probabilities (long run 
dependence)  of  surplus  net  radiat ion 
conditioned on low wind speed dominate all 
through the year. On the average, it takes 2.44 
days for surplus net radiation conditioned on 
high wind speed and 1.69 days for surplus net 
radiation conditioned on low wind speed to 
reoccur from January to December. By applying 
Markov Chain model in this study, we have 
being able to model net radiation conditioned on 
wind speed probabilistically using the 
stochastic approach. 
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