

N PASA

N
ig

e
ri

a
n

 A
n
n
a

ls
of Pure and Applie

d
S

c
ie

n
c
e

s

An implementation of Replication Oriented Architecture

(ROA) for Web Service Scalability

*Obilikwu, P. O. and Terwase, V. S.

Department of Mathematics and Computer Science, Benue State

University, Makurdi, Nigeria
*Corresponding author: poblikwu@gmail.com

doi: https//doi.org/10.46912/napas.176

Abstract

Web services provide application to application integration across different platforms. However, the

consumption of web services generates request traffic that must be attended to by an instance of the web

server without fail. To guarantee dependability of the web service, the instances of the web service are

replicated as a way of scaling the web service. The Replication Oriented Architecture (ROA) has been

designed and implemented using the Java Enterprise application development platform and interesting

results have been obtained. Improvements in the PHP scripting language have made it a popular

programming language for web and enterprise application development. In this paper, an

implementation of the ROA architecture using PHP is done. The implementation is simulated on the

Apache Jmeter and results compared to the results obtained in the Java implementation. The results

show that both application development platforms achieve web service scalability as a quality of service

(QOS) expected of a web service. In specific terms, 50.9% at 95.0% confidence level improvement in

response time was achieved when PHP is used which compares favorably with 22.5% improvement at

95.0% confidence level achieved on the Java platform.

Keywords: Web service, scalability, replication, availability, cluster, quality of service, Java, PHP

mailto:poblikwu@gmail.com

150 | An implementation of Replication Oriented Architecture (ROA) for Web Service Scalability

Introduction
The configuration of a web service

requires a server instance of the web service. The
carrying capacity of an instance, also referred to
as a virtual server, depends on its configuration
which includes memory, weights, administrator
listener port, http listener port among other
properties. Based on the configuration, the web
server instance is given a weight which defines the
number of requests it can handle among other
things. Creating multiple server instances is a way
of scaling the web service because a single server
instance cannot scale to accommodate very large
number of client connections (Braveti. Gilmore.
Guidi, Tribastone, 2008).

An instance may fail and may need to be
repaired automatically or otherwise. While
awaiting repairs, the request will have to be
transferred to another server instance. This
ensures the availability of the web service at any
given time. The need for several instances also
arises when the number of requests outweighs the
weight of the virtual server or the instance
configuration is not the same. Creating several
instances of web services defines its scalability.

There are empirical evidences that for the
current generation of web server applications,
multiprocessor platforms do not provide the
needed scalability to handle large traffic volumes.
A scalable web server architecture is therefore key
to enabling web services to handle the ever
increasing traffic loads (Marian, Birman and
Rennese, 2006). The scalability of web services
can be achieved by designing high quality
architectures and replication is one such
architecture. Replication is one of the most widely
researched concepts in distributed computing and
its initial use was in data replication. Data
replication has been used to improve data access
performances in distributed systems and it has
been proved as capable of increasing data
availability while reducing user waiting time,
enhancing fault tolerance and ultimately improves
scalability (Gopinath and Sherly, 2018).

A web service is a software component
which is seen as a service it offers (ThiBen and
Brambring, 2018). Web service is a self-contained
component, which is published, located and
invoked over the web. To achieve the goal of
interaction across different platforms and
programming languages, web service architecture
defines standards for service definition (Web
Service Description Language) and service

interaction (Simple Object Access Protocol).
(ThiBen and Brambring, 2018). The components
of a web (Dustdar and Schreiner, 2005) service
performs a discrete set of related functions.
(Digvijaysinh, 2017) and there are no single web
service standard.(Tilkov, 2005). Rather, the
associated protocols aim to provide a means of
describing data and behavior in a manner machine
can process (Taylor and Harrison, 2009). When it
is necessary to combine the functionality of
several web service we speak of a composition
service (Alonso et al, 2004). Composite services
are recursively defined as aggregation of
elementary and composite service (Dustdar and
Schreiner. 2005).

Registry Infrastructure
With the number of services growing in

today's computing environment, the need for
meaningful cataloguing is a must. More so, as the
number of consumers and services grow,
remembering which service provides what
functionality and the location of the service
endpoint in order to send messages becomes very
important. In the case of a small-scale SOA
model, dependability upon high degree of human
knowledge and interaction may be required but for
a growing or large-scale SOA model, there is the
need for a more effective and sustainable
approach. In order to employ the full potentials of
web service, the web service paradigm must be
supported by an appropriate service publication
and discovery infrastructure (Pilioura, Kapos and
Tsalgatidou, 2004). At present, the most prevalent
standard for WS publication and discovery is the
Universal Description Discovery and Integration
(UDDI) specification.

The UDDI information structure has four
levels: The top level is the business entity level
that provides the general data about the company,
such as its address, a short description, contact
information and other general identifiers.
Associated with each business entity is a list of
business services, including the description of
each service and the categories of the service, for
instance purchasing, shipping etc Also, within a
business service, one or more binding templates
provides more technical information about the
web service.

Benefits of Web Services Scalabilty
Relying on a single instance of a web

service is risky. It may become unavailable due to

Nigeria Annals of Pure and Applied Sciences Vol. 4 Issue 1, 2021 | 151

failure or even overloading. To reduce this
inherent risk, many instances should be created
thereby making the web service scalable and
available at all times. The importance of
scalability is even more obvious given the fact that
web services are inherently poorly scalable
(Birman, 2005a, Birman, 2006, Cignek et al,
2006). Scalability talks about the ability of web
services to be massively deployed on a large scale
on different platforms and still maintain
availability (Ekoubase and Onibere 2011).

Scalability assumes that instances of web
services can be created. A web service is thus
composed of several instances. In the event that an
instance is "deceased", the dependability quality
property of web services requires that the load on
the "deceased" instance is transferred to another
instance. Scalability therefore comes handy in
balancing load assuming the load exceeds the
weight of an instance. An instance of a web
service among other configuration properties has
a weight. The weight of an instance determines the
resources it needs to be instantiated. There are
several approaches for the composition of web
services. One prominent example is the Business
Process Execution Language (BPEL) for web
services (OASIS, 2007).

The preceding discussion laid a foundation
for this study in terms of a background study. The
rest of this paper is organized as follows: Section
2 reviews related work necessary to better
understand the technical aspects of this work, with
an emphasis on the replication technique as being
central to achieving web service scalability.
Section 3 describes the details of the procedures
and tools used to show that the PHP software
development environment can be used to build
scalable web service applications. In Section 4,
experiments using both java and PHP
development environments will be performed
using the procedures and the APACHE Jmeter as
a tools. The results of the experiments will be
discussed with the aim of comparing the results
obtained in both application development
environments Section 5 concludes the paper and
outlines current and future lines of research.

Review of Related Literature
Replications, clustering and parallel

computing (Loukopolous, Lampsas and Ahmad
2005) (Loukopolous, Lampsas and Ahmad 2005)
are well known as solutions to problems of
database scalability. They have been used to

enhance the performance and availability of
databases. Related to the discussion on how
replication, clustering and parallel computing has
been used to enhance the performance and
availability of databases are Database
Management Systems (DBMS) (Perez, Garcia-
Carballeira, Carretero, Calderon and Fernandez
(2010); Mobile Systems (Tu, Li, Xiao, Yen. and
Bastani (2006) and Large-scale systems and data
grid systems (Ranganathan and Foster, 2001;
Chervenak, Deelman, Foster, Guy, Hoschek,
Iamnitchi, Kesselman, Kunst, Ripeanu,
Schwartzkopf, B, Stockinger. and Tierney (2002).

All of the solutions related to achieving
might have been first used to enhance the
performance and availability of databases but they
have found its application in other areas especially
web service scalability. All the solutions rely on
the ability to create multiple copies of data or
service and to have multiple computers (that may
or may not be at the same location) working
together to provide the user with access to data or
service. In this way, the solutions are closely
interconnected and sometimes referred to
interchangeably. However, there are subtle
differences that are worth reviewing.

Database Replication Techniques
Replication has its origin in database

theory and distributed database systems (Goel,
Sunshant, Buyya & Rajkumar, 2006; Ghemawat
et al. (2003); Birman, 2004, 2005a). Data
replication can be categorized into two namely
static replication and dynamic replication
(Mokadem, and Hameurlain 2015). In a
distributed environment, data replication can take
place in a distributed storage this includes: (1)
Distributed DBMS (2) Peer-to-Peer Systems (3)
Data Grids (4) World Wide Web

Replicating database defines a database
where multiple copies of some data items are
stored at multiple sites or nodes (Goel, Sunshant,
Buyya and Rajkumar, 2006). Poor scalability can
result into poor system performance, hence the
need to evolve better replicating strategies to
improve performances especially in distributed
systems. Data replication is a major technique
used in distributed system to meet the challenges
of high availability and improved data access
performance. Data replication increases data
availability, reduces user waiting time, increases

152 | An implementation of Replication Oriented Architecture (ROA) for Web Service Scalability

fault tolerance and improves scalability. Static
data replication strategies follow a deterministic
approach were the number of replicas to be
created and the node to place the replica is well
defined and pre-determined. i.e when and where
to create replicas are determined before
commencing the execution of the application. In
static data replication is done randomly on
randomly chosen nodes for a fixed number of
times. Some examples of static replication
approaches in a cloud includes: (a) Google File
System (b) Hadoop Distributed File System (c)
Amazon Dynamo.

Ghemawat et al. (2003) designed Google
File system (GFS) used for scalable distributed
file systems in data intensive applications. This
file system support reliable, efficient access to
large set data using big cluster of cheap hardware.
The GFS implements a static distributed data
algorithm for Google cloud. In GFS, the replicas
in the multiple chunk servers are dynamically
maintained. The limitation of this approach is that
a fixed replica number is used for all files which
may not approach replication properly.

Hadoop Distributed File System (Bui,
Shujaat, Eui-Nam, and Sungyoung 2016), is a
storage component developed by Apache Hadoop.
This follows a static distributed replication policy
to provide availability and reliability of data. The
number of replica size for each file size is
configured at the time of file creation. The
placement of replicas is done in such a way that
two replicas are stored in two separate nodes in the
same local rack and one in a separate remote rack.
The hadoop replication strategy improves data
reliability, availability and network bandwidth
utilization. The drawback of this approach is that
access behaviour is not taken into consideration
for replicating data. Dynamic replication policy is
considered in such scenario where the replicas for
each data is decided based on access popularity of
data (Wei et al. (2010); Abad et al. (2011).

Clustering Architectures
Scaling web services means that as many

instances of a web service as required are created
to make the system fault tolerant. With redundant
instances, it is easy to fail over from a "deceased"
instance to another live instance. By default, the
instances of a web service runs on one or more
computers called clusters. Parallel computing is a
particular example of cluster computing where
multiple computers work together to provide some

function or function whereby multiple computers
each perform some sub-function. In the context of
databases, a common example of parallel
computing is a parallel database. Here multiple
computers each process a subset of a query based
on a subset of the data that they have access to.
Sharded databases, or most NoSQL databases
(MongoDB, Cassandra for example) are examples
of this kind of system.

There are many kinds of clustering with
implementations in different tiers. In every tier, it
may be named differently meaning the same thing
like virtualization, partitioning, mirroring. Some
of the clustering tiers include:
(1) AS Clustering: Application servers (and

HTTP servers) support clustering with
varying capabilities. Some of them can make
session state replication across AS instances.
Some of them have load-balancers to
distribute coming requests. Some of them
can have transparent fail-over feature etc.

(2) Hardware Clustering: RAID is such
technology used for both performance and
reliable disks.

(3) OS (Server) Virtualization: We know many
OS-level virtualization programs that can
run many logical servers within same
physical server at the same time.

(4) DB Clustering: Many DBMS supports
clustered database instances via different
topologies. We can add JDBC-level cluster
libraries to this category that simulate
clustered database feature.

Replication Oriented Architecture (ROA)
Replication is a mechanism whereby data

or a web service is made available in more than
one piece. In the simplest case of replication, there
is a master and a slave. This master and slave
arrangement could be in one computer or multiple
computers. Where replication is implemented in
more than one computer, the master copy could be
in one computer and the slave in another. The
computers may be in the same location or they
may be located in geographically disperse area
and connected via a communication network. The
master and slave are first synchronized and after
that, any change to the master is replicated to the
slave. The changes may be replicated
synchronously or asynchronously. Databases
provided replication natively (semi-synchronous
replication in MySQL) or one could use additional
software (for example, Galera or Tungsten). Disk

Nigeria Annals of Pure and Applied Sciences Vol. 4 Issue 1, 2021 | 153

mirroring in either hardware or software may also
be considered as forms of replication.

In situations where replication is
implemented in more than one computer, the
computers are said to be a cluster. Clustering is
therefore a generic term used to describe a class of
techniques where many computers work
collectively, and perform some function or
functions. For example, if data is replicated
between two locations then it is possible for a
database to access each data set and answer
queries submitted to it. In such a system, a copy of
data can be in one location and accessed by one
database instance and data in a either the same or
a different location accessed by a second database
instance. Then these two database instances would
be considered to be a database cluster. In this
example, each database instance is able to
completely answer queries against the data.
Oracle Real Application Clusters (RAC) is an
example of a system of this kind.

Drawing from the experiences garnered
from replicating databases, several specifications
have been developed for the replication of web
services. In the work of Farouk, O., Badawy, O.,
Youssef, M. [34] they proposed an architecture
that integrate replication and clustering to provide
reliability, availability and scalability of web
service. In their approach, they posit that
replication and clustering are needed to achieve
availability and scalability. In their architecture,
they proposed an N-tier architecture where
components were divided into Four: Clients,
Interface servers, Application servers, and
Database Servers. They deployed replication in
the interface servers and both clustering and
replication for the application servers. However,
this architecture with its manifold benefits is
complex to implement and interface issues may
present a challenge.

(Liu et al, 2004) presented in his research
a frame work to publish up-to-date QOS
information for web services in which the success
depends on the mechanism of the feedback from
the users about the quality of service they
consume.

Jaeger, Goldman and Muhl (2004)
proposed a mechanism which could be more
efficient by using an aggregation scheme for QOS
aspects. The scheme and approach as proposed by
the authors has a challenge in that, service for
composition are chosen sometime before
execution, the QOS parameters changes during

service execution, the QOS demands of a user may
be violated even if no issues are found during
service selection time. Replication is seen by this
author as a possible solution to deal with dynamic
QOS on performance, high availability and fault
tolerance. Several copies of service are used
instead of running single copies. There are a lot of
other replication architectures or strategies
example includes: The Gossip Architecture or
Quorum Consensus, the Double Quorum
architecture, and Cassandra. However, these
strategies are only worth mentioning but are not
considered.

According to ThiBen and Brambring
(2018), originally these replication strategies were
designed for data/database but soon there was a
transfer to object replication. However, there exist
approaches to implement these concepts into
service replication. Ye and Shen (2005), discussed
the implementation of reliable web service by
using active replication. In his architectural
approach, proxies for separating a user from the
web service. In this approach, the proxy accepts
all request from the user and is responsible for
ensuring consistency in the execution of the
several replicas. A user can only view a single
proxy on which it sends a request to, but in the
background, the proxy sends data or request
across all other proxies or recipients
simultaneously (multicasting), each recipient or
proxy hiding one of the web services of the group.
This approach focuses on reliability of web
services and only active replication is
implemented. However, when trying to look at
several QOS aspects, this approach is too
inflexible. In a similar case, (Chan et al, 2007)
approach is focused only on reliability, other QOS
is not dealt with. Quality of Service (QOS) is a
broad concept that can involve a number of
context-dependent non-functional properties such
as privacy, reputation and usability (Liu, Ngu and
Zeng, 2004). More so, in the work of (Salas,
Perez-Sorrosal, Patino and Peris, 2006) web
service replication as an approach was carried out
with a goal of providing highly available web
service in a wide area network. Again, this
approach made use of active replication to achieve
high availability and introduced a multicast
mechanism to communicate between replicas.

In (Ekoubase and Onibere, 2011), the
proposed architecture for web service scalability
is server side and it has been noted from the web
service solution test presented that the scalability

154 | An implementation of Replication Oriented Architecture (ROA) for Web Service Scalability

of web service is significantly better when built on
ROA. This view is also supported by (Thiben and
Brambring, 2018).

In the work, it was shown that ROA
improves the web scalability by 31.7% with 90%
of confidence. The web service architecture as
proposed by Ekuobase and Onibere (2011) was
however implemented on the Java Enterprise
Application platform to neglect of other
competing enterprise application development
platforms.

Php Web and Enterprise Application

Development Platform
PHP is currently one of the most popular

languages used in open source community and in
industry to build large web-focused applications
and webservices (Dudhe and Sherekar, 2014).
PHP has evolved over the years from a scripting
language to an Object Oriented Programming
(OOP) Language thereby providing the web
development community with all the powerful
benefits of OOP. With the evolution of PHP from
the very first version to the current stable version
8.0, several aspect of the language has evolved:
the use of libraries, removal of some functions,
stability of user interfaces (Kyriakakis and
Chatzigeorgiou. 2014).

PHP has gained maturity over the years by
the number of growing open source community

and the number third party libraries and APIs
used. In terms of speed, PHP there has been
tremendous improvement starting from versions
5.6 to the stable 8.0. In terms of frameworks, PHP
boast a lot of open web frameworks such as
symphony, cakePHP, Zend, Laravel and others
thereby adding speed to web development which
eases the development of SOAP and RESTful
Webservices.

Methodology
The purpose of scalability testing is to

check whether our system scales appropriately to
the changing load. It is expected that a larger
number of incoming requests should cause
proportional increase in response time. The
proposed architecture will be built to reflect this
property.

Proposed Web Service Architecture

We chose to design a simple fictional web
application called Students information system
that pushes data to a backend that exposes its
functionality as a web service based on our
proposed web service replication architecture to
test for scalability. The Use-Case and
corresponding class diagram of the application are
depicted in Figures 1 and 2.

Figure 1: Use-case Diagram: Student Information Management System.

Figure 2: Class Diagram: Student Information Management System.

Nigeria Annals of Pure and Applied Sciences Vol. 4 Issue 1, 2021 | 155

In this implementation, a three-tier components architecture is proposed. The components are

web component, application component and the database or backend component. The architecture is

depicted in Figure 3.

A cluster with a single node in the
application server is used with two instances
created. Each instance with its configuration is
deployed as a multi-tier application. The goal of
this solution is to find metrics and check if the
solution scales appropriately in response to
increasing load based on the architectural design.

The message brokers system is used due to the
following advantages:
(1) To process background jobs. When

application needs to process a lot of data. E.g
an email notification from an online e-
commerce system.

(2) To process message later when application
is to.

(3) Scaling.

Hardware Tools: the tools used here were HP
Pavilion Notebook with the following
configurations: IntelCore (TM)i5-
2410M,CPU@2.30GHZ Dual Core, 6.0GB
installed memory and 600GB of Hard disk was
used for developing the prototype.

Software Tools: We chose to discuss our
software tools under operating system, Integrated
Development Environment (IDE), Development
language. We chose to use XAMPP server not
because it is silver bullet but because of familiarity
and its good features with respect to deploying
large web applications solutions. Windows 10
operating system was used not because of lack of
other operating systems, but just for familiarity.

Rabbitmq: is a message oriented middleware tool
that allows to communicate and exchange data by
sending and receiving messages. It uses the
AMQP (Advanced Message Queuing Protocol).

Docker: is a container management software with
images, volumes and container. An image is a
blueprint (structure with instructions) for building
a container. Images are made up of layers.

Backend Database: by this we mean the
relational database of choice of our application.
There were several DBMS but in a small to
medium application, the choice of MySQL
database was deemed adequate for our solution.

Language and IDE: the language of
implementing our application was Java
programming and the Integrated Development
Environment (IDE) of choice was Visual Studio.
This tool was chosen not because it was better than
other development environments like PHPStorm
or Netbeans IDE but because of its familiarity and
seamless compatibility with PHP and Mysql.

Simulation Tools: Apache JMeter 5.0 was used
as a simulation tool. This is because of its
extensive features and very vast array of listeners
and comprehensive GUI. The researcher is aware
of other simulation tools like SOAPUI, SOAPPro,
MatLab etc

Implementation
In order to test ROA architecture as

designed, Rabbitmq was installed with docker and
our application deployed. Our Application was a
fictitious Web Service application with a Mysql
backend and able to display request of its content
in JSON for other application to consume. The
message queing middleware (RabbitMQ) is akin
to Java Message Service in java. The request and
response is handled by the RabbitMQ. A file

156 | An implementation of Replication Oriented Architecture (ROA) for Web Service Scalability

called Dockerfile was created in order to provide
docker configuration for our PHP web service
application and its backend. The Dockerfile is a
file that is used in building an image this file
consist of various configurations for the rabbitmq
that serves as a blueprint for a Docker image. The
application was then simulated using Apache
JMeter and the response time of the application
was determined. We kept the number of request
(sample size) similar with the Java ROA solution.

Apache Jmeter is simulation software that
is designed to test and measure the performance
and functional behaviour of client applications. It
is one of the most popular and widely used open
source, freely distributed testing application.
JMeter was developed by Stephano Mazzochi of
the Apache Software Foundation. It was primarily
designed to test the performance of Apache JServ
which was later substituted with the Apache
Tomcat Project (Emily, 2008). Ever since its first
release, JMeter has since developed and evolved
to load-test FTP servers, database servers, java
servlets and objects. JMeter is written in java and

is highly extensible through a provided
Application Programming Interface (API). JMeter
works by simulating at client side of a
client/server application. JMeter has been widely
accepted as one of the best performance or load
testing simulation tools for web applications and
various companies have adopted Apache JMeter
as a performance testing tool (Emily, 2008). Some
of the companies includes: SharpMind of
Germany for functional and regression testing,
AOL for load testing of websites, ALALOOP of
France has used JMeter since 2008 for
performance testing of many web applications.

Results and Discussion
The results obtained from the two

experiments performed on Apache Jmeter are
depicted in tables 1 and 2. Table 1 shows the test
results the ROA architecture built using PHP
while Table 2 shows the results of the architecture
using Java. Both experiments used the same
dataset and ramp up period.

Table: 1: Scalability Table for our application solution build on ROA JAVA solution
No.

of

runs

No. of

Sample

size(Virtual
Users)

Ramp-up

Period (in

seconds)

Throughput

in Minutes

Per request

Throughput

in Minutes

Per request

Throughput

in (ms) (Tij)

Mid-

Response

of sample
size(ms)

Computational

Strength-per

unit request in

(ms)-2

Performance

Degradation(ms)-2

1 1 1 234.375 234.375 0.0651 256 0.000254313

2 5 2 182.704 36.5408 0.05075 37 0.001371652

3 10 4 163.488 16.3488 0.04541 41 0.001107642 0.00026401

4 50 24 127.081 2.54162 0.0353 42 0.000840483 0.000267159

5 100 50 120.817 1.20817 0.03356 42 0.000799054 4.1429E-05

6 150 80 113.182 0.75454666 0.03144 40 0.000785986 0.000013068

7 200 95 126.828 0.63414 0.03523 40 0.00088075 0.000094764

8 250 120 125.433 0.501732 0.03484 39 0.000893397 0.000012647

9 300 148 121.933 0.40644333 0.03387 39 0.000868469 0.000024928

10 350 170 123.786 0.35367428 0.03439 41 0.000838659 0.00002981

11 400 200 120.26 0.30065 0.03341 39 0.000856553 1.7894E-05

12 450 230 117.489 0.26108666 0.03264 42 0.000777044 7.9509E-05

13 500 248 121.165 0.24233 0.03366 44 0.000764931 1.2113E-05

14 550 270 122.409 0.22256181 0.034 39 0.000871859 0.000106928

15 600 298 120.985 0.20164166 0.03361 44 0.000763794 0.000108065

16 650 320 97.638 0.1502123 0.02712 44 0.000616402 0.000147392

17 700 345 121.876 0.17410857 0.03385 39 0.000868063 0.000251661

18 800 390 123.196 0.153995 0.03422 36 0.000950586 0.000082523

19 900 400 135.027 0.15003 0.03751 41 0.000914817 3.5769E-05

20 1000 430 139.636 0.139636 0.03879 40 0.000969694 5.4877E-05

π=9.13637E-05

Table 2: Scalability Table for our application solution build on PHP ROA Equivalent.
No.

of

runs

No. of

Sample

size(Virtu

al Users)

Ramp-up

Period (in

seconds)

Throughput

in Minutes

Per request

Throughput in

Minutes

Per request

Throughput in

(ms) (Tij)

Mid-

Response
of sample

size(ms)

(Rij)

Computational

Strength-per unit

request in (ms)-2

Perfomance

Degradation(ms)
-2

1 1 1 652.174 652.174 0.181159444 15 0.012077296
2 5 2 5769.231 1153.8462 0.320512833 44 0.007284383

3 10 4 1073.345 107.3345 0.029815139 470 6.34365E-05 0.007220946
4 50 24 5988.024 119.76048 0.0332668 217 0.000153303 -8.98668E-05

Nigeria Annals of Pure and Applied Sciences Vol. 4 Issue 1, 2021 | 157

Table 2: Cont.

5 100 50 121.065 1.21065 0.000336292 21 1.60139E-05 0.000137289
6 150 80 113.065 0.753766667 0.00020938 19 1.102E-05 4.99391E-06
7 200 95 126.834 0.63417 0.000176158 19 9.27149E-06 1.74849E-06
8 250 120 125.41 0.50164 0.000139344 16 8.70903E-06 5.62463E-07
9 300 148 121.957 0.406523333 0.000112923 16 7.0577E-06 1.65133E-06
10 350 170 123.829 0.353797143 9.8277E-05 15 6.5518E-06 5.05898E-07
11 400 200 120.243 0.3006075 8.35021E-05 15 5.56681E-06 9.84993E-07
12 450 230 117.586 0.261302222 7.2584E-05 14 5.18457E-06 3.82238E-07
13 500 248 121.163 0.242326 6.73128E-05 14 4.80806E-06 3.76512E-07
14 550 270 122.354 0.222461818 6.17949E-05 14 4.41392E-06 3.94131E-07
15 600 298 120.959 0.201598333 5.59995E-05 14 3.99997E-06 4.13958E-07
16 650 320 122.002 0.187695385 5.21376E-05 14 3.72411E-06 2.75852E-07
17 700 345 121 0.172857143 4.80159E-05 14 3.42971E-06 2.9441E-07
18 800 390 123.189 0.15398625 4.2774E-05 13 3.2903E-06 1.39401E-07
19 900 400 110.29 0.122544444 3.40401E-05 13 2.61847E-06 6.71833E-07
20 1000 430 139.612 0.139612 3.87811E-05 13 2.98316E-06 -3.64691E-07
 π=0.000404522

The results obtained are as shown in tables

1 and 2 were subjected to calculation using MS-
Excel application. It is also important to note that
the ramp-up period was chosen at random but it
was chosen in a way to mimic real life load on the
application solution.

We apply the mathematical model for
estimating the computational strength of an
application with increasing request as

 jiji SS ,, …………………… (1)

(Ekuobase, and Onibere, 2013).

Where  represents the user degradation

tolerance. The computational strength Sij for an

application i, for j request per unit time is given

by:
















ji

ji

ji
R

T
CS

,

.

, * ……………………….. (2)

(Ekuobase, and Onibere, 2013).

Where C is a constant denoting server and
hardware strengths, Tij=application throughput
per unit request, Tij is converted to per
milliseconds (ms), Rij =application mid response
time set of request or sample in milliseconds (ms),
i represents the application, where i=0(1) , 0 for
the conventional approach solution and 1 for the
ROA. j=number of samples.

C=1, because we are comparing the
computational strength with each other under the
same hardware and software.

Let the samples, X and Y be the
performance degradation at the Java ROA
approach and our PHP ROA approach and their
means µx and µy. We seek whether or not our
solution built on PHP ROA approach will improve
scalability.

We proposed hypotheses: H1: µx<µy (java
ROA approach is not significantly scalable to
ROA built on PHP). H2: µx>µy We make certain
assumptions:
(1) That our sample size is normally distributed.
(2) Our sample size is small. In our case 20 (i.e.

n=20).
(3) Our data points (sample size) are the same.
(4) We have the same variance.

2

2

1

2

n

Sy

n

Sx
valueT

yx







 …………….. (3)

Where n1and n2 are the number of

samples, Sx and Sy are the standard deviation and

Sx
2 , Sy

2 is the variance between the two samples.

From Table 1 and 2, µx= 0.0000913637,

µy=0.0004045, n1=n2=20, Sx
2= 0.000000007612,

Sy
2=0.000002896

Substituting these values in equation (3),

T-value =
60.00038102

60.00031313
 =0.821.

Using the Null Hypothesis, H0 (There are
no significant difference between the samples),
using the 0.05 (α level) probability,=> 95% times
the null hypothesis will be rejected and only 5%
the null hypothesis will not be rejected.

158 | An implementation of Replication Oriented Architecture (ROA) for Web Service Scalability

The degree of freedom (df)=(n1-1)+(n2-1)

(for an independent test). =38.

The critical value from the two tailed T-
Test=2.021.

Also, using descriptive statistics in our
Microsoft Excel to calculate the confidence level
for the mid response time, we calculate the
confidence interval for Table1. The Application
solution built on ROA Java solution) result as
22.5% improvement with 95.0 confidence level.
Furthermore, we also calculated the confidence
interval for Table 2. The Application solution built
on ROA PHP solution) 50.9% improvement at
95.0 confidence level.

We conclude that since our T value is
lower than the critical value, we don’t reject the
null hypotheses. It therefore means there is
nothing statistically significantly different
between the samples from both architectures.

Conclusion
Based on our analysis, we generally

conclude that there are no differences in the
scalability of web services built with ROA using
Java and its equivalent in PHP. However, it was
observed from literature reviewed that web
services developers are now tilting towards the
use of PHP for developing web services due to its
popularity and available of several frameworks.

This paper did not delve deeply into some
of the areas that are considered novel in the
general area of web services but this work is a
foundation based on which such areas will be
studied in our future research. Such areas include
the following among others:
(1) The area of building web services as a

microservice.
(2) Docker/ kubernetes (Container

Orchestration) for large container
management of web services deployed in
containers.

(3) Web Services security. Web services being
distributed across different platforms on the
internet faces the challenge of security.

References
Abad, Cristina L., Yi Lu, and Roy H. Campbell.

(2011). “DARE: Adaptive data replication
for efficient cluster scheduling. “, in cluster
computing (CLUSTER), 2011 IEEE
international Conference on, IEEE 159-168.

Birman, K. (2005): Can Web Services Scale up?
IEEE Computers. 38(10):107-110.

Birman, K., Cignek, R. (2006): The
Untrustworthy Web Services Revolution.
IEEE Computer.39(2):98-100.

Braveti, M. Gilmore, S. Guidi, C. Tribastone, M.
(2008). Replicating webservices for
scalability. Trustworthy global Computing.
ISBN: 978-3-540-78662-7. Volume 4912.

Bui, Dinh-Mao, Shujaat Hussain, Eui-Nam Huh,
and Sungyoung Lee. (2016): Adaptive
replication management in HDFS based on
supervised learning.” IEEE Transactions on
Knowledge and Data Engineering 28(6):
1369-1382.

Chan, P.P.W. (2007). Reliable Web Services:
Methodology, Experiment and Modeling.
Proceedings of the IEEE International
Conference on Web Services (ICWS 2007),
Salt Lake City, USA.

Chande, Suresh (2003). Semantic Wev & Web
service software technology Laboratory
Nokia Research Centre.

Chande, Suresh (2003): Semantic Web and Web
Service Software Technology Laboratory
Nokia Research Centre.

Chervenak, A., Deelman, E., Foster, I., Guy, L.,
Hoschek, W, Ianmnitchi, A., Kesselman, C.,
Kunst, P., Ripeanu, M., Schwatzkopf, B.,
Stockinger, K., and Tierney, B. (2002):
'Giggle: a framework for constructing
scalable replica location service',
supercomputing.

Digvijaysinh, R. (2017). "REGISTRY FOR
RESTful WEB SERVICE: RESTRegistry."
International Journal of Research-
Granthaalayah, 5(7), 128-135.
https://doi.org/10.5281/zenodoo.835523.

Dudhe, A, & Sherekar, S. (2014). Performance
Analysis of SOAP and RESTful Mobile
Webservices in Cloud Environment.
International Journal of Computer
Applications, 975,8887.

Duster, S., Schreiner, W. (2005)." A Survey on
Web Services Composition", International
Journal of Web and Grid Services, Vol. 1,
No. 1, pp.1-30.

Ekuobase, G. and Onibere, E. (2011).
Architecture for Scalable Web Services
Solution. Canadian Journal of Pure and
Applied Sciences. 5(1):1449-1453.

Ekuobase, G. and Onibere, E. (2013). Scalability
of Web Services Solution built on ROA.
Canadian Journal of Pure and Applied
Sciences. vol. 7, No. 1 pp.2251-2270.

https://doi.org/10.5281/zenodoo.835523

Nigeria Annals of Pure and Applied Sciences Vol. 4 Issue 1, 2021 | 159

Ghemawat, Sanjay, Howard Gobioff and Shun-
Tak Leung. (2003): “The Google File
System. 19th ACM Symposium on operating
system principles 37(5): 29-43

Halili, E. H. (2008). Apache JMeter: A Practical
Beginner’s Guide to Automated Testing and
Performance for Websites. Birmingham, U.
K. Pack Pub.

Http://www.omg.org/technology/documents/spec
_Catalog.htm.

Jaeger, M.C., Goldman, R. G., Muhl, G. (2004):
QOS Aggregation for Web Service
Composition using Workflow Patterns.
Proceedings of the 8th IEEE International
Enterprise Distributed Object Computing
Conference (EDOC'04), Monterey, USA.

Liu, Y., Ngu, A., Zeng, L. (2004): QOS
Computation and Policing in Dynamic Web
Service Selection. Proceedings of the 13th
International World Wide Web Conference
(WWW 2004), New York City, USA.

Marian, T., Birman, K., van Rennese, R. (2006):
A Scalable Service Architecture. 25th IEEE
Symposium on Reliable Distributed
Systems(SRDS'2006)0-7695-2677-2/06.

Mokadem, R., and Hameurlain, A. (2015).'Data
Replication strategies with performance
objective in data grid systems: A Survey',
International Journal of Grid and Utility
Computing, vol.6, No.1 pp. 30-46.

OASIS, (2007). Web Service Business Process
Executor Language Version 2.0 OASIS
Standard. http:'//docs.oasis-open.org/wsbpel
/2.0/OS/wsbpet V 2.0-OS. pdf.

P. Kyriakakis and A. Chatzigeorgiou,
“Maintenance Patterns of Large-scale PHP
Web Applications,” IEEE International
Conference on Software Maintenance and
Evolution, PP. 381-390, 2014.

Perez, J. M., Garcia-Carballeira, F., Carretero, J.,
Calderon, A. and Fernandez, J.
(2010):"Branch Replication Scheme: A new
model for data replication in Large Scale
Data Grids", Future Generation Computer
Systems, Vol. 26. no.1, pp.12-20.

Piloura, T. Kapos, G. D. & Tsalgatidou, A. (2004).
PYRAMID-S: A Scalable Infrastructure for
Semantic Web Service Publication and

Discovery. 14th International Workshop
Research Issues on Data Engineering: Web
Services for e-Commerce and e-
Government Applications. Proceedings.
doi:10.1109/ride.2004.1281698. source:
IEEE Xplore.

Ranganathan, K. and Hameurlain, A. (2001).
''Identifying dynamic replication strategies
for a high performance data grid',
International Workshop on Grid Computing.

Salas, J., Perez-Sorrosal, F. Patino, M.M., Peris,
J.R. (2006). WS-Replication: A Framework
for Highly Available Web Services.
Proceedings of the 15th International World
Wide Web Conference (WWW 2006),
Edinburgh, Scotland.

ThiBen, D. Brambring, T. (2018): Improving
Quality of Web Services By using
Replication. IADIS International Journal on
WWW/Internet. VOL. 7. No. 1. pp.
26-43.

Tilkov, S. (2005): Web Services Overview,
GISOA. stefan.tilkov@innoq.com, innoq
Deutschland GmbIT, http://www.innoq.com

Tu, M., Li, P. Xiao, L., Yen, I. L. and Bestani, F.B.
(2006). ''' Replica Placement Algorithm
for Mobile Transaction Systems", IEEE
Transactions on Knowledge and Data
Engineering, Vol. 18, No. 7, pp. 954-970.

Van Steen, M., & Piere, G. (2010): 'Replicating
for performance case studies'.

Web Services: A Survey of Web Services.
citeseerx.1st.psu.edu/viewdoc/download?
DOI=10.1.1.97

Wei, Qingsong, Bharadwaj Veeravalli, Bozhao
Gong, Lingfang zeng, and Dan Feng.
(2010) “CDRM: A cost effective dynamic
replication management scheme for cloud
storage cluster”, in cluster Computing
(CLUSTER), 2010 IEEE International
Conference on: 188-196.

White, T. (2012). Hadoop: The definitive guide.
“O’ Reilly Media, Inc”.

Ye, X. and Shen, Y. (2005). A Middleware for
Replicated Web Services. Proceedings of
the IEEE International Conference on
Web Services (ICWS'05), Orlando, USA.

http://www.omg.org/technology/documents/spec_Catalog.htm
http://www.omg.org/technology/documents/spec_Catalog.htm
http://www.innoq.com/

