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Abstract 

This paper examines the use of data envelopment analysis (DEA) in the conduct of efficiency 

measurement involving fuzzy (interval) input-output values. Data envelopment analysis is a linear 

programming method for comparing the relative productivity (or efficiency) of multiple service 

units. Standard DEA models assume crisp data for both the input and output values. In practice 

however, input and output values may be uncertain, vague, imprecise or incomplete. New pairs of 

fuzzy DEA (FDEA) models are presented which differ from existing fuzzy DEA models handling 

uncertain data. In this approach, upper bound interval data are used exclusively to obtain the upper 

frontier values while lower bound interval data are used exclusively to obtain the lower frontier 

values. The outcome, when compared with the outcome of existing approach, based on the same 

set of data, shows a swap in the upper and lower frontier values with exactly the same number of 

efficient decision making units (DMUs). This new approach therefore clears the ambiguity 

occasioned by the mixture of upper and lower bound values in the determination of the upper and 

lower frontier efficiency scores respectively. The modified FDEA models make application and 

interpretation of results easy. The most efficient units, for each of the models, have efficiency score 

of 1 with equivalent ranking score of 1. These efficient units also serve as reference sets to the 

inefficient units. The inefficient units have efficiency scores less than 1 for all the models. The 

most inefficient unit is S13 for all the models and it has the least efficiency score in each case and 

a ranking score of 25. 

 

Keywords: Fuzzy, Data envelopment analysis, Modified, Models. 
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Introduction 

 This paper extends the technique of 

fuzzy (interval) data envelopment analysis 

(FDEA). In particular, the paper seeks to 

present modified fuzzy Charnes, Cooper and 

Rhodes (FCCR) and fuzzy Banker, Charnes 

and Cooper (FBCC) models for use with 

interval fuzzy numbers. This paper also 

compares the conventional DEA, the FDEA 

presented by Zeidan et al. (2016) and Demir 

(2014). For ease of comparison, the data set for 

25 high schools in the 2012-2013 education 

year in Demir (2014) is used. 

Data envelopment analysis (DEA) was 

first presented by Charnes, Cooper and Rhodes 

(1978) leveraging on the 1957 seminal paper of 

Farrell whose main purpose was the estimation 

of technical efficiency and efficiency frontiers. 

DEA has become one of the most widely used 

techniques for measuring the efficiency of 

decision making units (DMU). A basic 

assumption of DEA for the measurement of the 

total technical efficiency of a DMU is that of 

constant returns to scale (CRS). This was later 

modified by Banker, Charnes and Cooper 

(1984) to become variable returns to scale 

(VRS) (Demir, 2014). According to Zeidan et 

al., (2016), Data envelopment analysis is a non-

parametric technique for evaluating and 

measuring the relative efficiency of decision 

making units characterized by multiple inputs 

and multiple outputs. 

The basic DEA works with crisp values 

for both the input and output values. Being a 

very responsive method, its efficiency is easily 

affected by errors bothering on imprecise data, 

incomplete data, judgment data, forecasting 

data or ambiguous data. In general, imprecise 

data can be presented in form of fuzzy 

numbers. It is therefore worthwhile to study 

how to evaluate the efficiency of a set of data 

in fuzzy form. In such a situation, FDEA 

becomes a useful method to overcome the 

shortcomings of basic DEA. 

Wang et al. (2005) studied how to 

conduct efficiency assessment in interval 

and/or fuzzy input-output environments in a 

simple, rational and effective way using data 

envelopment analysis. They constructed a new 

pair of interval DEA models on the basis of 

interval arithmetic, which differs from the 

existing DEA models handling interval data. 

Demir (2014) compared classical DEA 

and FDEA based on α-intercept method by 

means of an application for educational 

researches. He compared the relative activities 

of 25 high schools in the 2012-2013 education 

year by means of DEA and FDEA and strongly 

recommends that fuzzy theory be practiced for 

DEA problems with uncertain data in order to 

get more secure results in activity 

measurements. 

Zeidan, et al. (2016) presented a 

technique to improve a statistical method based 

on arithmetic operations to solve fuzzy data 

envelopment analysis models. They 

transformed the original data into interval data 

in the form of lower and upper frontier data and 

used them to obtain the interval DEA 

efficiency scores. Their method requires that 

data should be distributed as a normal 

distribution. Thus, the technique assumes that 

the variables are normally distributed. This 

position is however at variance with the fact 

that DEA, being a non-parametric technique, 

does not assume any specific functional form 

relating inputs to outputs (Zhu, 2002). 

Mahmudah and Lola (2016) applied the 

fuzzy DEA approach to measure the 

Indonesian universities performances under 

imprecise inputs and outputs. Their empirical 

results show that 36% of universities perform 

efficiently under the constant returns to scale 

model. For the variable returns to scale model, 

52% of the universities were efficient. They 

discovered that the well-known universities 

obtained relatively low scores indicating the 

need for them to improve their performances in 

publishing scientific work in addition to 

providing useful information to the public 

through the official websites. They concluded 

that the results of the VRS model are better than 

the CRS model for both the DEA and FDEA 

methods. 

Tlig and Hamed (2017) accessed the 

efficiency of commercial Tunisian Banks using 

two approaches of fuzzy data envelopment 

analysis, namely, the possibility approach and 

the approach based on relations between fuzzy 

numbers (BRONF). They evaluated the 
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efficiency of the banks in terms of several crisp 

and imprecise data. Their results indicate that 

in a competitive environment, no-financial 

inputs and outputs should be considered in 

order to have credible and realistic efficiency 

scores. 

Gökşen et al. (2015) used Data 

Envelopment Analysis to determine the 

performance levels of departments in Dokuz 

Eylul University (Turkey). Their study 

discussed the technical scores and scale scores 

of departments and revealed the main cause of 

inefficiency. The input and output goals of 

departments were fixed for a better efficiency. 

Fatimah and Mahmudah (2017) 

performed a two-stage DEA for the purpose of 

measuring the efficiency of elementary schools 

in Indonesia in the period 2014/2015 using 34 

DMUs. Their results show that VRS model 

gives better results than CRS model in the first 

stage. They further showed that 12 provinces in 

Indonesia have efficient elementary schools 

under the CRS model, while 17 provinces have 

efficient elementary schools under the VRS 

model. Their study established that three 

environmental variables; the repetition rate, the 

average of science of national exam and the 

qualified teacher’s rate influence the efficiency 

of elementary schools in Indonesia. 

Karimi (2019) analysed the technical 

efficiency of elementary schools in all 33 

districts of Rajasthan, India from 2014 to 2016 

using Data envelopment analysis VRS model. 

The result showed high average technical 

efficiency in 2016 as against 2014 and 2015. 

The paper further provided evidence that some 

high literacy rate but low technical efficiency 

scores were found after comparing literacy 

rates and technical efficiency scores of the 

districts, indicating that high literacy rate does 

not necessarily mean that districts are 

technically efficient. 

The rest of the paper is organized as 

follows: Basic models of DEA and (FDEA) 

fuzzy Data Envelopment Analysis models, and 

the suggested modification to the fuzzy 

(interval) DEA, are discussed in the second, 

third and fourth sections covering the 

theoretical aspect of the study. Section five 

deals with the application of the modified fuzzy 

DEA model and its comparison with the model 

by Wang et al., (2005). Section six presents the 

summary of results and concludes the work. 

 

Basic Models of Data Envelopment Analysis 

Many authors have studied the 

technique of data envelopment analysis. 

Originally, DEA was designed to measure the 

relative efficiency of non-for-profit 

organizations. Due to its ability to model 

multiple input and multiple output 

relationships without a priori underlying 

functional form assumption, data envelopment 

analysis has also been applied to other areas 

which are profit oriented (Zhu, 2003). 

Development of new methods and models have 

evolved due to wide application. This paper 

will however, present only Charnes, Cooper 

and Rhodes (CCR) and Banker, Charnes and 

Cooper (BCC) DEA models for the purpose of 

understanding the fundamentals of DEA. 

 

Charnes, Cooper, and Rhodes DEA model 

The CCR DEA model by Charnes et al. 

(1978) is given below in fractional form. 

yro: The number of the output by the DMU, o 

xio: The amount of the input used by the DMU, 

o 

ur: The weight of the output, r 

vi: The weight of the input, i 

 

Objective function: 

max ℎ𝑜 =
∑ 𝑢𝑟𝑦𝑟𝑜

𝑠
𝑟=1

∑ 𝑣𝑖𝑥𝑖𝑜
𝑚
𝑖=1

  

Subject to: 
∑ 𝑢𝑟𝑦𝑟𝑗

𝑠
𝑟=1

∑ 𝑣𝑖𝑥𝑖𝑗
𝑚
𝑖=1

≤ 1;    𝑗 = 1, 2, ⋯ , 𝑛 

𝑢𝑟 , 𝑣𝑖 ≥ 0;    𝑟 = 1, 2, ⋯, 
𝑠;    𝑖 1,2, ⋯ , 𝑚 (1) 

 

 Transformation of fractional CCR DEA 

model (1) into linear form: 

Objective function: 

max ℎ𝑜 = ∑ 𝑢𝑟𝑦𝑟𝑜

𝑠

𝑟=1
 

Subject to: 

∑ 𝑣𝑖𝑥𝑖𝑜

𝑚

𝑖=1
= 1 

∑ 𝑢𝑟𝑦𝑟𝑗 − ∑ 𝑣𝑖𝑥𝑖𝑗 ≤ 0;    𝑗
𝑚

𝑖=1

𝑠

𝑟=1

= 1,2, ⋯ , 𝑛 
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𝑢𝑟, 𝑣𝑖 ≥ 0;    𝑟 = 1, 2, ⋯ , 𝑠;    𝑖 = 1,2, ⋯ , 𝑚  (2) 

 

Efficiency Frontier of the CCR DEA Model 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Banker, Charnes and Cooper DEA 

Model 

The BCC model was introduced by 

Banker, Charnes and Cooper in 1984. It is an 

extension of the CCR model. The major 

difference between the two models lies in the 

establishment of returns to scale. While 

constant returns to scale is assumed in CCR 

which means that increase in inputs results to 

commensurate increase in outputs, variable 

returns to scale is assumed in BCC implying 

that increase in inputs does not result to 

commensurate increase in outputs. 

Accordingly, the BCC model is more robust 

than the CCR model (Zeidan et al., 2016). The 

CCR and BCC radial models are depicted 

pictorially in Fig. 1 and Fig. 2, respectively. 

The BCC model in fractional form 

differs from the CCR model (1) by an 

additional variable as presented below: 

Objective function: 

 

max ℎ𝑜 =
∑ 𝑢𝑟𝑦𝑟𝑜 − 𝑐𝑜

𝑠
𝑟=1

∑ 𝑣𝑖𝑥𝑖𝑜
𝑚
𝑖=1

  

Subject to: 
∑ 𝑢𝑟𝑦𝑟𝑗 − 𝑐𝑜

𝑠
𝑟=1

∑ 𝑣𝑖𝑥𝑖𝑗
𝑚
𝑖=1

≤ 1;    𝑗 = 1, 2, ⋯ , 𝑛 

 

𝑢𝑟 , 𝑣𝑖 ≥ 0;    𝑟 = 1, 2, ⋯ , 𝑠;    𝑖 = 1,2, ⋯ , 𝑚 

𝑐𝑜   𝑢𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑 𝑖𝑛 𝑠𝑖𝑔 (3) 

 

Where the new variable 𝑐𝑜 separates 

scale efficiency from technical efficiency in 

CCR model. 

Model (3) can be transformed into 

linear form as follows: 

max ℎ𝑜 = ∑ 𝑢𝑟𝑦𝑟𝑜 − 𝑐𝑜

𝑠

𝑟=1
 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:   ∑ 𝑣𝑖𝑥𝑖𝑜 = 1
𝑚

𝑖=1
 

∑ 𝑢𝑟𝑦𝑟𝑗 − ∑ 𝑣𝑖𝑥𝑖𝑗

𝑚

𝑖=1
− 𝑐𝑜 ≤ 0;      𝑗

𝑠

𝑟=1

= 1, 2, ⋯ , 𝑛 

𝑢𝑟 , 𝑣𝑖 ≥ 0;    𝑟 = 1, 2, ⋯ , 𝑠;    𝑖 = 1,2, ⋯ , 𝑚 

𝑐𝑜   𝑢𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑 𝑖𝑛 𝑠𝑖𝑔𝑛  (4) 

 

If (𝑐𝑜 = 0),  then constant returns to scale 

(CRS) is implied. 

If (𝑐𝑜 < 0),  then increasing returns to scale 

(IRS) is implied. 

If (𝑐𝑜 > 0),  then decreasing returns to scale 

(DRS) is implied, (Zeidan et al., 2016). 

 

 

 

Efficiency Frontier 

CRS 

Output 

Production Possibility Set 

Fig. 1: Efficiency Frontier of the CCR Model 

Input 
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Efficiency Frontier of the BCC DEA Model 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fuzzy Data Envelopment Analysis (FDEA) 

The works of Sengupta (1992, 1993) 

incorporated fuzziness into DEA. He suggested 

two membership functions, “Linear 

Membership Function” and “Non-linear 

Membership Function”, for fuzzy 

mathematical programing model (Demir, 

2014). 

The approach to change fuzzy data into 

offset data using α-level mass to create a 

solution that could take advantage of a family 

of classical DEA models was made by Kao and 

Liu (2000, 2003). Leveraging on the approach, 

Saati et al., (2002) made fuzzy CCR model as 

an offset programming model through defining 

it as programming problem using α-level. An 

improvement on interval data DEA was made 

by Wang et al., (2005) by employing DEA 

technique in the offset data and established a 

fuzzy efficiency measurement. 

Cooper et al., (1999) created interval 

data envelopment analysis model (IDEA). The 

IDEA model can change the non-linear 

programing problems into linear programing 

problem through scale conversions and 

variable changes (Demir, 2014). Using Wang 

et al’s technique, interval data programing 

model can be solved like a definitive linear 

programming model for each DMU and an 

efficiency score can be made by means of each 

α-level (Deniz, 2009). 

The technique of DMU with fuzzy data 

which could convert FDEA model into certain 

DEA model series was improved by Kao and 

Liu (2000). 

 

Existing FDEA Linear Programing 

Formulation 

Given that all inputs and outputs are 

incomplete as a result of uncertainties, let these 

values be known as 𝑥𝑖𝑗
𝐿 > 0 and 𝑦𝑟𝑗

𝐿 > 0 and 

[𝑥𝑖𝑗
𝐿 , 𝑥𝑖𝑗

𝑈] and [𝑦𝑟𝑗
𝐿 , 𝑦𝑟𝑗

𝑈 ] and they are between 

these top-down limits. To deal with such 

uncertain situation, Kao and Liu, 2000, Wang 

et al., 2005, Güneş, 2006, and Demir, 2014 

defined FDEA model with fuzzy interval data 

in which limited data is used for efficiency 

measurement to generate upper and lower 

bounds for each DMU, as follows: 

Upper Bound 

𝑀𝑎𝑥 ℎ0
𝑈 =

∑ 𝑢𝑟𝑦𝑟0
𝑈𝑠

𝑟=1

∑ 𝑣𝑖𝑥𝑖0
𝐿𝑚

𝑖=1

 

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:   
∑ 𝑢𝑟𝑦𝑟𝑗

𝑈𝑠
𝑟=1

∑ 𝑣𝑖𝑥𝑖𝑗
𝐿𝑚

𝑖=1

≤ 1;   𝑗 = 1,2, ⋯ , 𝑛 

𝑢𝑟 , 𝑣𝑖 ≥ 0;   𝑟 = 1,2, ⋯ , 𝑠;   𝑖 =
1,2, ⋯ , 𝑚 (5) 

 

Lower Bound 

𝑀𝑎𝑥 ℎ0
𝐿 =

∑ 𝑢𝑟𝑦𝑟0
𝐿𝑠

𝑟=1

∑ 𝑣𝑖𝑥𝑖0
𝑈𝑚

𝑖=1

 

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:   
∑ 𝑢𝑟𝑦𝑟𝑗

𝐿𝑠
𝑟=1

∑ 𝑣𝑖𝑥𝑖𝑗
𝑈𝑚

𝑖=1

≤ 1;   𝑗 = 1,2, ⋯ , 𝑛 

Output 
Efficiency Frontier 

CRS 
Production Possibility Set 

Input 

Fig. 2: Efficiency Frontier of the BCC Model 

IRS 

DRS 
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       𝑢𝑟 , 𝑣𝑖 ≥ 0;   𝑟 = 1,2, ⋯ , 𝑠;   𝑖 =
1,2, ⋯ , 𝑚  (6) 

 

Observe that, in the fractional 

programing model (5), a mixture of the upper 

output values and lower input values were used 

to obtain the upper bound of the best possible 

relative efficiency of DMUo, ℎ0
𝑈. Similarly, for 

model (6), a mixture of the lower output values 

and upper input values were used to obtain the 

lower bound of the best possible relative 

efficiency of DMUo, ℎ0
𝐿. However, the ratio of 

upper and lower bound values cannot logically 

give rise to ℎ0
𝑈, neither can the ratio of lower 

and upper bound values logically give rise to 

ℎ0
𝐿. Hence the need for a modification. 

 

THE SUGGESTED MODIFICATION TO 

FUZZY (INTERVAL) DEA MODEL 

In this study, ℎ0
𝑈, the upper bound of the 

best possible relative efficiency of DMUo is 

obtained by using the ratio of upper bound 

values for both the output and input interval 

data. For ℎ0
𝐿 , the  lower bound of the best 

possible relative efficiency of DMUo is 

obtained by using the ratio of lower bound 

values for both the output and input interval 

data. Models (5) and (6) are therefore modified 

as follows: 

𝑀𝑎𝑥 ℎ0
𝑈 =

∑ 𝑢𝑟𝑦𝑟0
𝑈𝑠

𝑟=1

∑ 𝑣𝑖𝑥𝑖0
𝑈𝑚

𝑖=1

 

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:   
∑ 𝑢𝑟𝑦𝑟𝑗

𝑈𝑠
𝑟=1

∑ 𝑣𝑖𝑥𝑖𝑗
𝑈𝑚

𝑖=1

≤ 1;   𝑗 = 1,2, ⋯ , 𝑛 

𝑢𝑟 , 𝑣𝑖 ≥ 0;   𝑟 = 1,2, ⋯ , 𝑠;   𝑖 =
1,2, ⋯ , 𝑚  (7) 

 

𝑀𝑎𝑥 ℎ0
𝐿 =

∑ 𝑢𝑟𝑦𝑟0
𝐿𝑠

𝑟=1

∑ 𝑣𝑖𝑥𝑖0
𝐿𝑚

𝑖=1

 

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:   
∑ 𝑢𝑟𝑦𝑟𝑗

𝐿𝑠
𝑟=1

∑ 𝑣𝑖𝑥𝑖𝑗
𝐿𝑚

𝑖=1

≤ 1;   𝑗 = 1,2, ⋯ , 𝑛 

𝑢𝑟 , 𝑣𝑖 ≥ 0;   𝑟 = 1,2, ⋯ , 𝑠;   𝑖 =
1,2, ⋯ , 𝑚  (8) 

 

In linear programming form, models (7) and 

(8) become: 

𝑀𝑎𝑥 ℎ0
𝑈 = ∑ 𝑢𝑟𝑦𝑟0

𝑈
𝑠

𝑟=1
 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:  ∑ 𝑣𝑖𝑥𝑖0
𝑈 = 1

𝑚

𝑖=1
 

∑ 𝑢𝑟𝑦𝑟𝑗
𝑈

𝑠

𝑟=1
− ∑ 𝑥𝑖𝑗

𝑈
𝑚

𝑖=1
≤ 0;   𝑗 = 1,2, ⋯ , 𝑛 

𝑢𝑟 , 𝑣𝑖 ≥ 0;   𝑟 = 1,2, ⋯ , 𝑠;   𝑖 =
1,2, ⋯ , 𝑚 (9) 

𝑀𝑎𝑥 ℎ0
𝐿 = ∑ 𝑢𝑟𝑦𝑟0

𝐿
𝑠

𝑟=1
 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:  ∑ 𝑣𝑖𝑥𝑖0
𝐿 = 1

𝑚

𝑖=1
 

∑ 𝑢𝑟𝑦𝑟𝑗
𝐿

𝑠

𝑟=1
− ∑ 𝑥𝑖𝑗

𝐿
𝑚

𝑖=1
≤ 0;   𝑗 = 1,2, ⋯ , 𝑛 

𝑢𝑟 , 𝑣𝑖 ≥ 0;   𝑟 = 1,2, ⋯ , 𝑠;   𝑖 =
1,2, ⋯ , 𝑚 (10) 

 

Application and Comparison of Classical 

DEA Models, existing Fuzzy Models and the 

Modified Models 

Models (9) and (10) will be solved by 

first transforming the crisp data into interval 

data using the approach of Demir (2014). 

Standard errors for each variable will be added 

to obtain the upper frontier data, while standard 

errors for each variable will be subtracted to 

obtain the lower frontier data. For the upper 

frontier efficiency scores, the upper frontier 

values of both the output and input data will be 

used. To obtain the lower frontier efficiency 

scores, the lower frontier values of both the 

output and input data will be used. 

To evaluate and compare results from 

classical DEA models, existing interval DEA 

models and the modified interval DEA models; 

real data set of 25 high schools in the 2012 – 

2013 education year is taken from Demir 

(2014). The data description is as follows: 

inputs (numbers of students, teachers and 

classes), outputs (Transition to Higher 

Education Examination (YGS), Undergraduate 

Placement Exam (LYS) success (placement) 

rates, YGS point averages, all points of the 

LYS Maths-Science (MS), Turkish-Maths 

(TM), and Turkish-Social (TS) Sciences 

(Zeiden et al., 2016). See Appendix 1. The 

DEA models are solved using DEA-SOLVER-

LV8. 
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The efficiency values for the classical 

DEA input oriented CCR and BCC models are 

presented in Tables 1 and 2. 

 

 

Table 1: Efficiency scores for classical CCR DEA model 

No. DMU Score Rank  Reference(Lambda)   

1 S1 0.9701 5 S11 0.776 S17 1.552   

2 S2 0.4515 13 S11 0.563 S17 1.195   

3 S3 1 1 S3 1     

4 S4 0.4737 12 S11 0.969 S17 0.59   

5 S5 0.3693 17 S3 0.3 S11 0.258 S17 0.807 

6 S6 0.5488 10 S3 0.158 S11 0.586 S17 0.571 

7 S7 0.5404 11 S3 0.292 S17 0.824   

8 S8 1 1 S8 1     

9 S9 0.8642 7 S17 1.344     

10 S10 0.6864 8 S3 0.444 S8 0.17 S17 0.495 

11 S11 1 1 S11 1     

12 S12 0.2179 23 S3 0.297 S17 0.657   

13 S13 0.1259 25 S3 0.136 S11 0.543 S17 0.297 

14 S14 0.2196 22 S11 0.179 S17 0.882   

15 S15 0.2727 20 S11 0.059 S17 1.041   

16 S16 0.2097 24 S3 0.162 S11 0.093 S17 0.693 

17 S17 1 1 S17 1     

18 S18 0.9395 6 S17 1.044     

19 S19 0.392 15 S3 0.039 S17 0.964   

20 S20 0.4203 14 S17 1.074     

21 S21 0.2379 21 S11 0.564 S17 0.468   

22 S22 0.278 19 S3 0.057 S11 0.1 S17 0.802 

23 S23 0.6759 9 S11 0.341 S17 0.782   

24 S24 0.362 18 S3 0.599 S17 0.504   

25 S25 0.3865 16 S3 0.527 S17 0.336   

 

Table 2: Efficiency scores for classical BCC DEA model 

No. DMU Score Rank  Reference(Lambda)       

1 S1 1 1 S1 1         

2 S2 1 8 S2 1         

3 S3 1 1 S3 1         

4 S4 0.5106 13 S1 0.399 S3 0.366 S11 0.235     

5 S5 0.4067 15 S1 0.249 S3 0.489 S8 0.122 S17 0.139   

6 S6 0.7185 11 S1 0.199 S3 0.575 S11 0.226     

7 S7 0.5732 12 S1 0.046 S3 0.308 S8 0.189 S9 0.01 S17 0.447 

8 S8 1 1 S8 1         

9 S9 1 1 S9 1         

10 S10 1 8 S10 1         

11 S11 1 1 S11 1         

12 S12 0.2221 22 S3 0.201 S11 0.095 S17 0.704     

13 S13 0.1272 25 S3 0.085 S11 0.597 S17 0.318     

14 S14 0.2203 23 S1 0.046 S11 0.143 S17 0.811     

15 S15 0.2742 20 S1 0.075 S17 0.925       

16 S16 0.2143 24 S3 0.055 S11 0.199 S17 0.746     

17 S17 1 1 S17 1         

18 S18 1 1 S18 1         

19 S19 0.3925 17 S3 0.039 S8 0.006 S17 0.954     

20 S20 0.4483 14 S8 0.328 S17 0.672       

21 S21 0.2392 21 S1 0.022 S3 0.024 S11 0.527 S17 0.427   

22 S22 0.2851 19 S11 0.158 S17 0.842       

23 S23 0.8265 10 S3 0.513 S17 0.487       

24 S24 0.3815 18 S1 0.045 S3 0.646 S8 0.116 S17 0.192   

25 S25 0.3934 16 S3 0.239 S11 0.551 S17 0.21     
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 Thorough examination of Tables 1 and 2 

indicate that twenty-one units are inefficient 

with only four units efficient for the classical 

CCR model. For the classical BCC model 

however, sixteen units are inefficient while 

nine units are efficient. The most efficient units 

have efficiency score of 1 with equivalent 

ranking score of 1. These efficient units also 

serve as reference sets to the inefficient units. 

The most inefficient unit, S13, has least 

efficiency score of 0.1272 and a ranking score 

of 25. It has efficient units S3, S11 and S17 as 

reference set (Lambda). In order words, it 

should emulate what these efficient units are 

doing in order to become efficient. Notice that 

each efficient unit serves as its own reference 

(Lambda). 

 

Table 3: Lower bound efficiency scores for the modified CCR model 

No. DMU Score Rank  Reference(Lambda)   

1 S1 0.7789 6 S11 1.053 S17 1.35   

2 S2 0.338 13 S11 0.807 S17 0.988   

3 S3 1 1 S3 1     

4 S4 0.3607 12 S11 1.064 S17 0.528   

5 S5 0.2816 17 S3 0.312 S11 0.409 S17 0.658 

6 S6 0.4368 11 S3 0.161 S11 0.671 S17 0.5 

7 S7 0.4384 10 S3 0.399 S11 0.014 S17 0.654 

8 S8 0.8131 5 S3 0.074 S17 1.38   

9 S9 0.601 7 S17 1.367     

10 S10 0.5172 9 S3 0.331 S17 1.058   

11 S11 1 1 S11 1     

12 S12 0.1634 22 S3 0.246 S11 0.192 S17 0.537 

13 S13 0.0898 25 S3 0.107 S11 0.616 S17 0.266 

14 S14 0.1569 23 S11 0.365 S17 0.688   

15 S15 0.1979 20 S11 0.279 S17 0.812   

16 S16 0.1556 24 S3 0.044 S11 0.365 S17 0.595 

17 S17 1 1 S17 1     

18 S18 0.8325 4 S17 1.045     

19 S19 0.2997 15 S3 0.141 S11 0.068 S17 0.741 

20 S20 0.2525 18 S3 0.037 S17 1.022   

21 S21 0.1723 21 S11 0.635 S17 0.394   

22 S22 0.2059 19 S3 0.076 S11 0.238 S17 0.63 

23 S23 0.5264 8 S11 0.362 S17 0.768   

24 S24 0.2848 16 S3 0.675 S11 0.017 S17 0.378 

25 S25 0.3021 14 S11 1.141     
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Table 4: Upper bound CCR efficiency scores 

 
Source: Demir 2014 

In Table 3, the efficient DMUs due to the modified FDEA lower bound CCR model are 

the same as the efficient DMUs due to the FDEA upper bound CCR model in Table 4 from Demir 

(2014). 

 

Table 5: Lower bound efficiency scores for the modified BCC model 

No. DMU Score Rank  Reference(Lambda)     

1 S1 1 1 S1 1       

2 S2 1 1 S2 1       

3 S3 1 1 S3 1       

4 S4 0.458 13 S1 0.399 S3 0.366 S11 0.235   

5 S5 0.3369 14 S1 0.248 S3 0.512 S8 0.091 S17 0.149 

6 S6 0.6481 11 S1 0.199 S3 0.575 S11 0.226   

7 S7 0.4726 12 S1 0.043 S3 0.381 S8 0.099 S17 0.477 

8 S8 1 1 S8 1       

9 S9 1 1 S9 1       

10 S10 1 8 S10 1       

11 S11 1 1 S11 1       

12 S12 0.1641 22 S3 0.198 S11 0.245 S17 0.557   

13 S13 0.09 25 S3 0.085 S11 0.641 S17 0.275   

14 S14 0.1608 23 S1 0.038 S11 0.323 S17 0.639   

15 S15 0.2073 20 S1 0.064 S3 0.026 S11 0.18 S17 0.731 

16 S16 0.1558 24 S3 0.053 S11 0.348 S17 0.599   

17 S17 1 1 S17 1       

18 S18 1 1 S18 1       

19 S19 0.3025 17 S3 0.041 S11 0.174 S17 0.785   

20 S20 0.2935 18 S3 0.021 S8 0.282 S17 0.697   

21 S21 0.178 21 S1 0.015 S3 0.078 S11 0.554 S17 0.353 

22 S22 0.2111 19 S11 0.326 S17 0.674     

23 S23 0.7498 10 S3 0.513 S17 0.487     

24 S24 0.3033 16 S1 0.044 S3 0.672 S8 0.081 S17 0.203 

25 S25 0.3108 15 S3 0.239 S11 0.551 S17 0.21   
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Table 6: Upper bound BCC efficiency scores 

 
Source: Demir 2014 

In Table 5, the efficient DMUs due to the modified FDEA lower bound BCC model are 

the same as the efficient DMUs due to the FDEA upper bound BCC model in Table 6 from Demir 

(2014). 

 

Table 7: Upper bound efficiency scores for the modified CCR model 

No. DMU Score Rank  Reference(Lambda)     

1 S1 1 1 S1 1       

2 S2 0.5361 14 S1 0.095 S11 0.309 S17 1.198   

3 S3 1 1 S3 1       

4 S4 0.5495 12 S1 0.339 S3 0.321 S11 0.413   

5 S5 0.4389 16 S1 0.091 S3 0.383 S17 0.755   

6 S6 0.6544 10 S3 0.175 S11 0.624 S17 0.493   

7 S7 0.6257 11 S3 0.188 S17 0.971     

8 S8 1 1 S8 1       

9 S9 0.9668 7 S8 0.609 S17 0.528     

10 S10 0.7613 9 S3 0.435 S8 0.18 S17 0.49   

11 S11 1 1 S11 1       

12 S12 0.275 22 S3 0.165 S17 0.853     

13 S13 0.1596 25 S1 0.016 S3 0.146 S11 0.488 S17 0.309 

14 S14 0.2734 23 S1 0.027 S17 1.005     

15 S15 0.3584 19 S17 1.097       

16 S16 0.2611 24 S3 0.125 S17 0.844     

17 S17 1 1 S17 1       

18 S18 0.9739 6 S17 1.043       

19 S19 0.4919 15 S8 0.155 S17 0.817     

20 S20 0.5371 13 S17 1.071       

21 S21 0.2925 21 S1 0.033 S11 0.481 S17 0.478   

22 S22 0.3427 20 S3 0.021 S17 0.964     

23 S23 0.7697 8 S17 1.058       

24 S24 0.4312 18 S3 0.515 S17 0.623     

25 S25 0.4382 17 S3 0.831       
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Table 8: Lower bound CCR efficiency scores 

 
Source: Demir 2014 

In Table 7, the efficient DMUs due to the modified FDEA upper bound CCR model are 

the same as the efficient DMUs due to the FDEA lower bound CCR model in Table 8 from Demir 

(2014). 

 

Table 9: Upper bound efficiency scores for the modified BCC model 

No. DMU Score Rank  Reference(Lambda)       

1 S1 1 1 S1 1         

2 S2 1 1 S2 1         

3 S3 1 1 S3 1         

4 S4 0.5538 13 S1 0.399 S3 0.366 S11 0.235     

5 S5 0.4635 16 S1 0.25 S3 0.474 S8 0.143 S17 0.133   

6 S6 0.7655 11 S1 0.199 S3 0.575 S11 0.226     

7 S7 0.6458 12 S1 0.047 S3 0.285 S8 0.188 S9 0.04 S17 0.44 

8 S8 1 1 S8 1         

9 S9 1 1 S9 1         

10 S10 1 1 S10 1         

11 S11 1 1 S11 1         

12 S12 0.2754 22 S3 0.176 S8 0.04 S17 0.784     

13 S13 0.1615 25 S3 0.086 S11 0.557 S17 0.357     

14 S14 0.2737 23 S1 0.053 S17 0.947       

15 S15 0.3598 19 S1 0.075 S17 0.925       

16 S16 0.2654 24 S3 0.058 S11 0.062 S17 0.881     

17 S17 1 1 S17 1         

18 S18 1 1 S18 1         

19 S19 0.4931 15 S8 0.065 S17 0.935       

20 S20 0.5481 14 S8 0.328 S17 0.672       

21 S21 0.2928 21 S1 0.027 S11 0.485 S17 0.488     

22 S22 0.3464 20 S11 0.019 S17 0.981       

23 S23 0.8672 10 S3 0.513 S17 0.487       

24 S24 0.4451 18 S1 0.045 S3 0.641 S8 0.124 S17 0.19   

25 S25 0.4583 17 S3 0.239 S11 0.551 S17 0.21     
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Table 10: Lower bound BCC efficiency scores 

 
Source: Demir 2014 

 

In Table 9, the efficient DMUs due to 

the modified FDEA upper bound BCC model 

are the same as the efficient DMUs due to the 

FDEA lower bound BCC model in Table 10, 

from Demir (2014). 

 

 

Results and Conclusion 

Results of the efficient decision making 

units (DMUs) due to classical DEA models, 

fuzzy DEA models proposed by Wang et al., 

(2005) and adopted by Demir (2014) and the 

modified fuzzy DEA models are presented in 

summary form in tables 11 and 1

Table 11: Comparison of DEA, FDEA and modified FDEA Efficiency Results via CCR 

Classical DEA Lower and upper efficient FDEA 

(Demir) 

Lower and upper efficient FDEA 

(Modified) 

 L U L U 

S3 S1 S3 S3 S1 

S8 S3 S11 S11 S3 

S11 S8 S17 S17 S8 

S17 S11   S11 

 S17   S17 

 

Table 12: Comparison of DEA, FDEA and modified FDEA Efficiency Results via BCC 

Classical DEA Lower and upper efficient FDEA 

(Demir) 

Lower and upper efficient FDEA 

(Modified) 

 L U L U 

S1 S1 S1 S1 S1 

S2 S2 S2 S2 S2 

S3 S3 S3 S3 S3 

S8 S8 S8 S8 S8 

S9 S9 S9 S9 S9 

S10 S10 S10 S10 S10 

S11 S11 S11 S11 S11 

S17 S17 S17 S17 S17 

S18 S18 S18 S18 S18 

 



220|    Modified Fuzzy Data Envelopment Analysis Models. 

 Table 11 presents the efficient DMUs 

from the three DEA models. A major finding in 

the case of CCR, when the results of Demir and 

that of the modified model are compared is that, 

the efficient DMUs when the upper bound 

model (Model 5) is applied, corresponds to the 

efficient DMUs when the lower bound 

modified model (Model 10) is applied. 

Similarly, when the lower bound model (Model 

6) is applied, the result corresponds to that of 

the upper bound modified model (Model 9). 

 The implication of this finding is that, 

the ambiguity created by the mixture of upper 

bound and lower bound values to generate 

efficiency scores in each of Models 5 and 6 can 

be avoided. Instead, the modified Models 9 and 

10, where upper bound values are used 

exclusively to generate upper efficiency scores 

and lower bound values are used exclusively to 

generate lower efficiency scores can be 

adopted to avoid the ambiguity. 

 In the case of BCC, Table 12, the 

efficient DMUs are the same for all the models 

compared. This is not unexpected since BCC is 

more robust and adopts variable returns to scale 

(VRS) frontier as against the more restrictive 

CCR which adopts the constant returns to scale 

(CRS) frontier. 
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