
Cauchy's integral theorem and formula which holds for analytic functions is proved in most standard 
complex analysis texts. The nth derivative form is also proved. Here we derive the nth derivative form of 
Cauchy's integral formula using division method and showed its link with Taylor's theorem and 
demonstrate the result with some polynomials.
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Introduction
 Cauchy's theorem is regarded as a basic 
result in complex analysis as analysed by Conway 
(1986). The theorem along with the Cauchy's 
integral formula is powerful tool for contour 
integration and some types of real integrals when 
combined with the method of residues. Through a 
very simple application of Cauchy's theorem, it 
becomes possible to represent analytic functions 
as line integrals which the variable z enters as a 
parameter (Ahlfors, 1979). It is this representation 
that is known as Cauchy's integral formula and has 
numerous important applications. McCharty 
(1975) usedCauchy's integral formulato prove 
Cayley – Hamilton theorem and more importantly, 
it enables us to study the local properties of an 
analytic function in great details. 
 The original result of Cauchy was published 
in 1825 in which he used the idea of calculus of 
variation, and since then the theorem has 
w i t n e s s e d  i m p r o v e m e n t  b y  v a r i o u s 
mathematicians. Cauchy himself gave a second 
prove of the theorem in 1846 using the concept of 
exact differentials together with Green's theorem. 
After Cauchy, the next version of the proof was 
published by Riemann in 1953. Riemann 
broadened the scope of the theorem to include all 
continuous functions with continuous derivative 
on and inside a simple closed curve. Many other 
significant developments were made during the 
remainder of the nineteenth century (Alpay, 2015)
 Goursat in  1900 drew at tent ion of 
mathematicians back to the basics of the theory 
when he proved Cauchy's theorem without the 
assumption of a continuous derivative. This proof 
introduced a new method of approach, which is 
working directly with the integral rather than 
separating it into its two real components (Scott, 
1978).
 Shortly,  after  Goursat 's  proof was 
published, Moore in the same year, endeavoured 
to rigorize the argument. Though Moore 
somewhat restricted the class of functions for 
which the theorem applied by imposing a special 
condition on them, he was careful to include the 
concepts of rectifiability for the curve and simple 
connectivity for the domain. Motivated by Moore, 
Pringsheim published a proof of the theorem 
within the next year. It was a simple proof for 
simple rectifiable curves, the idea being to prove 
the theorem for triangles and then apply the result 
with some limit considerations to approximate the 
integral along a closed curve by one along an 
inscribed polygon (Scott, 1978)
 The final stage of the proof was in the mid 
twentieth century. This time the contributions to 
the proof were topological in nature. The last 

analytical development in the proof of the theorem 
was by Dixon (1971). He used a local version of 
the integral theorem, properties of analytic 
functions were developed and using these 
properties, the Cauchy's integral formula and 
ultimately, the Cauchy's integral theorem were 
proved. The significance of Dixon's proof was that 
it broadened the scope of the theorem even further 
by including all domains in its hypothesis (Scott, 
1978).
 More recent authors like Dyer and 
Edmunds (2014), John and Russell (2011) and 
Juan (2016) based their proof on the homology 
version of Dixon. We recall the theorem here.

Cauchy's Integral Theorem:
 If f (z) is analytic inside and on a contour C, 
then the integral of f (z) around the curve is zero, 
where C is oriented in the positive sense 
(counterclockwise). That is 

 For the application, it is very important that 
the conclusion of Cauchy's theorem remains valid 
under the weaker condition which we state as a 
theorem below:

Theorem 1: 
 Let f (z) be analytic in a region Δ obtained by 
omitting a finite number of points z from an open i  

disc Δ.  If f (z) satisfies the condition
for all i then (1) holds for any closed curve C in Δ’. 
(Ahlfors, 1979). 
 To get the Cauchy's integral formula, let f (z) 
be analytic in an open disc Δ and consider a closed 
curve C in Δ and a point a in Δ Δwhich does not lie in 
C. Then apply Cauchy's theorem to the function F (z) 
= (f (z)  -  f (α)) / (z - α) which is analytic for z ≠ α 
but satisfy Theorem 1. For 

which lead to the conclusion that

From (2) above, we have

The integral   is by definition n ( C, a)2πi 

where n(C,a) is the index number of the point a with 
respect to the curve C or the winding number of C 
with respect to a. The most common application is 
the case where n ( C, a) = 1, so that 
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is the Cauchy’s integral formula. Now a can assume any value, say z in C so that  

With (3)' we can now prove that analytic functions have derivatives of all orders (Brown and Churchill, 

2009). The proof uses the fact that (3) is analytic and differentiated to give  

byusing the difference quotient  

which gives (4) as Δz approaches zero. Further f,  (z) is analytic so we differentiate to get 

Again, the difference quotient is 

 

  

 
       

 which establishes (5) as ΔZ approaches zero.  
This process continues and the nth derivative is given by 

is the nth derivative form of the Cauchy’s integral formula.If we allow that  denotes , and 

since 0! = 1, we can write (3)׳ and (6) together as  

It is this integral formula we want to establish using division method and demonstrate the result with 

polynomials (without loss of generality), which are entire functions in the complex plane. Another 

reason for the choice of polynomials is that they have power series of finite degree n. Note that we can 

rewrite (7) as  

Our observation is that the left hand side of (8) is exactly the same as the value of the remainder if we 

divide by for any fixed  a and variable z . Also, for an application of (8), we note that if 

and f(z) = 1, 
 

Methodology
The method we use is to divide the given analytic 
function, which in this case is a polynomial of 
degree n by (z - a) , where a belong to the region of 
analyticity of belong to the region of analyticity of f. 
We can then write f as a product of (z - a) and the 
quotient plus the remainder. The next step is to divide 
the quotient by (z - a). Again the quotient can be 
written in terms of (z - a) and a second quotient plus a 
second remainder. f  is then written out to include the 
two quotients and the two remainders. We continue 

the process until the nth step and finally write out f in 
terms of the divisors, quotients and the remainders. 

n+1
The next thing is to divide through by (z - a)  and 
then integrate around the curve C where C: |z - a| = 
r>0. Our claim is that the remainders are precisely 
the Taylor series coefficients which are easily 
calculated.
 We proceed formally by choosing an 
arbitrary polynomial of degree n and divide it by(z - 
a) Let the polynomial be P (Z) so thatn 
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As we divide and its quotients repeatedly by z – a and taking note of the remainders, we have the 
following: 

At the nth division, we have

Letting and dividing through by we will get 

Integrating along , the Cauchy’s integral formula emerges. In fact, we can say 

more that 

which is already an existing result (Needham, 1997). All these results become simpler and clearer from 

just simple division. 
 

Results 
In this section, we demonstrate the methods described above on some polynomials. 

Example 

Consider the polynomial and we want to take . We do the following:  

The remainder is . This remainder is f(a)= f(i/2).  Since 

We can then write  

Now we divide through by z – i/2 so that

We now integrate both sides around a circle that contain i/2 in its interior. 

Let 

Applying Cauchy’s theorem to and (9), we have that 

, 0 < r <∞. Then
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We can also integrate directly to get zero.  

Next, we divide by again to get so that   

So that 

Applying Cauchy’s theorem to and (9) to , we have that 

The given polynomial is , . and 

, which is consistent with the values computed above. So far we have obtained 

the first derivative. To obtain the second derivative, we divide (10) by to get

 So that  

             

 

Since our polynomial is of degree two, third and higher derivatives will be zero. This is also 

easily seen as further division of (12) by and integrating will make all terms of the right hand side 

zero. If we choose a polynomial of degree n, then we can divide n times to establish the nth derivative.  

Example 

As a second example, let us choose and follow the same procedure 

as in the first example. Suppose our a here is 1. Then dividing f(z) by z – 1 we get 

Next we divide  by z – 1 and get 

Further, we divide  by z – 1 to arrive at 

Finally, dividing z + 4 by z – 1 again, we have 

Writing out f(z) completely by putting (11) to (14) together and dividing by (z – 1)4, gives 

 Integrating both sides around , we will get at the first division that

At second division, we get . Also at the third division,

. Finally at the fourth division, we find that . 

. 

To check our results, we compute        ,         ,  and . Now 

,                               ,                ,                   ,                     and  

Maiden Edi�on    2018				|		263



To get the fourth derivative we divide (15) by z – 1 
again to get that 

 Higher derivatives are all zero. There is 
parity between these results.
 Generally, we can choose a polynomial of 
degree n and divide n times following the 
procedures we have adopted in the examples 

thabove to establish the n  derivative formula. But 
before we do that, let's return to examples again to 
reveal an interesting link between these 
polynomial division and Taylor's series, from 
which the Cauchy's integral formula reveal itself.
 Now let us pick the second example: Here 

 Observe that the last equation is the Taylor 
series expansion of f (z) about z = 1 so that the 
coefficients are exactly the derivatives that appear 
in Taylor's expansion. What we mean is that

5
 So, if we divide both sides by (z - 1)  and then 
integrate both sides around C such that 1 is in the 
interior of C, we can easily establish the Cauchy's 
integral formula for up to the fourth derivative.

Concluding Remarks
 Cauchy's theorem and its integral formula is 
a very basic result in complex analysis. It is 
important then to understand the concepts 
especially that the proof passed through a lot of 
stages. One of the way is to look at it from various 
points just like the proofs have different 
approaches by different people. So in this paper, 
we have just looked at how we can reach the 
Cauchy's integral formula from repeated division, 
which make the theory compare with the 
elementary ideas of remainder theorem.
 The way we arrived at the results looks 
simpler to understand for beginners than the 
normal proof of differentiation. As we performed 
the division repeatedly, we see that we are actually 
expanding the given analytic function in its Taylor 

series about the specified point a ∈ C.
 This link of Cauchy's integral theorem with 
Taylor's series is remarkable and who knows 
whether analysis on Taylor's series as regard 
convergence and radius of convergence may have 
link with Cauchy's integral formula. This is a 
subject for further study.
 In a nutshell, we have been able to reach at 
Cauchy's integral formula, which is not a new 
result, but from a perspective which is novel.
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